यदि$z$ एक सम्मिश्र संख्या है, तब सदिश $z$ तथा $ - iz$ के मध्य कोण होगा
$\pi $
$0$
$ - \frac{\pi }{2}$
इनमें से कोई नहीं
यदि $\frac{3+ i \sin \theta}{4- i \cos \theta}, \theta \in[0,2 \pi]$, एक वास्तविक संख्या है, तो $\sin \theta+i \cos \theta$ का एक कोणांक (argument) है
यदि $z$ एक ऐसी सम्मिश्र संख्या है कि $|z| \geq 2$ है, तो $\mid z+\frac{1}{2} \mid$ का न्यूनतम मान:
यदि ${z_1}.{z_2}........{z_n} = z,$ हो, तब $arg\,{z_1} + arg\,{z_2} + ....$+$arg{z_n}$और $arg\,z$ का अन्तर होगा
$arg\,(5 - \sqrt 3 i) = $
यदि सम्मिश्र संख्या $z = x + iy$ इस प्रकार ली जाती है कि भिन्न $\frac{{z - 1}}{{z + 1}}$ का कोणांक सदैव $\frac{\pi }{4}$ हो, तो