यदि $\frac{3+ i \sin \theta}{4- i \cos \theta}, \theta \in[0,2 \pi]$, एक वास्तविक संख्या है, तो $\sin \theta+i \cos \theta$ का एक कोणांक (argument) है

  • [JEE MAIN 2020]
  • A

    $-\tan ^{-1}\left(\frac{3}{4}\right)$

  • B

    $\tan ^{-1}\left(\frac{4}{3}\right)$

  • C

    $\pi-\tan ^{-1}\left(\frac{4}{3}\right)$

  • D

    $\pi-\tan ^{-1}\left(\frac{3}{4}\right)$

Similar Questions

माना $z,w$ सम्मिश्र संख्यायें हैं जबकि $\overline z  + i\overline w  = 0$ और $arg\,\,zw = \pi $, तब $arg\  z$ बराबर है  

  • [AIEEE 2004]

यदि समुच्चय $\left\{\operatorname{Re}\left(\frac{\mathrm{z}-\overline{\mathrm{z}}+\mathrm{z} \overline{\mathrm{z}}}{2-3 \mathrm{z}+5 \overline{\mathrm{z}}}\right): \mathrm{z} \in \mathbb{C}, \operatorname{Re}(\mathrm{z})=3\right\}$ अंतराल $(\alpha, \beta]$ के बराबर है, तो $24(\beta-\alpha)$ का मान है:

  • [JEE MAIN 2023]

यदि $|{z_1}|\, = \,|{z_2}|$ तथा $arg\,\,\left( {\frac{{{z_1}}}{{{z_2}}}} \right) = \pi $, तब ${z_1} + {z_2}$बराबर है

यदि ${z_1},{z_2}$एवं ${z_3}$तीन सम्मिश्र संख्याऐं इस प्रकार हैं कि  $|{z_1}|\, = \,|{z_2}|\, = \,|{z_3}|\, = $$\left| {\frac{1}{{{z_1}}} + \frac{1}{{{z_2}}} + \frac{1}{{{z_3}}}} \right| = 1\,,$ तब${\rm{ }}|{z_1} + {z_2} + {z_3}|$ का मान है

  • [IIT 2000]

किसी भी सम्मिश्र संख्या $z$ के लिए $\bar z = \left( {\frac{1}{z}} \right)$यदि और केवल यदि