4-1.Complex numbers
hard

यदि $\frac{3+ i \sin \theta}{4- i \cos \theta}, \theta \in[0,2 \pi]$, एक वास्तविक संख्या है, तो $\sin \theta+i \cos \theta$ का एक कोणांक (argument) है

A

$-\tan ^{-1}\left(\frac{3}{4}\right)$

B

$\tan ^{-1}\left(\frac{4}{3}\right)$

C

$\pi-\tan ^{-1}\left(\frac{4}{3}\right)$

D

$\pi-\tan ^{-1}\left(\frac{3}{4}\right)$

(JEE MAIN-2020)

Solution

$\frac{3+i \sin \theta}{4-i \cos \theta}$ is a real number

$\Rightarrow 3 \cos \theta+4 \sin \theta=0$

$\Rightarrow \tan \theta=\frac{-3}{4}$

argument of $\sin \theta+i \cos \theta=\pi-\tan ^{-1} \frac{4}{3}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.