Trigonometrical Equations
easy

The expression $(1 + \tan x + {\tan ^2}x)$ $(1 - \cot x + {\cot ^2}x)$ has the positive values for $x$, given by

A

$0 \le x \le \frac{\pi }{2}$

B

$0 \le x \le \pi $

C

For all $x \in R$

D

$x \ge 0$

Solution

(c) The expression is $\frac{{(1 + \tan x + {{\tan }^2}x)(1 + {{\tan }^2}x – \tan x)}}{{{{\tan }^2}x}}$

$=  \frac{{{{(1 + {{\tan }^2}x)}^2} – {{\tan }^2}x}}{{{{\tan }^2}x}}$

Obviously, $1 + {\tan ^2}x \ge {\tan ^2}x,{\rm{ }}\forall {\rm{ }}x$. 

Hence it is positive for all value of $x.$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.