The expression $(1 + \tan x + {\tan ^2}x)$ $(1 - \cot x + {\cot ^2}x)$ has the positive values for $x$, given by
$0 \le x \le \frac{\pi }{2}$
$0 \le x \le \pi $
For all $x \in R$
$x \ge 0$
If $tan(\pi sin \theta)$ $= cot(\pi cos \theta)$, then $\left| {\cot \left( {\theta - \frac{\pi }{4}} \right)} \right|$ is -
Let $f(x) = sinx + 2sin^2x + 3sin^3x + 4sin^4x+....\infty $ , then number of solution $(s)$ of equation $f(x) = 2$ in $x \in \left[ { - \pi ,\pi } \right] - \left\{ { \pm \frac{\pi }{2}} \right\}$ is
If $3({\sec ^2}\theta + {\tan ^2}\theta ) = 5$, then the general value of $\theta $ is
The solution set of the equation $tan(\pi\, tanx) = cot(\pi\, cot\, x)$ is
If $1 + \sin x + {\sin ^2}x + .....$ to $\infty = 4 + 2\sqrt 3 ,\,0 < x < \pi ,$ then