Gujarati
8. Sequences and Series
medium

Let $X$ be the set consisting of the first $2018$ terms of the arithmetic progression $1,6,11$,

. . . .and $Y$ be set consisting of the first $2018$ terms of the arithmetic progression $9, 16, 23$,. . . . . Then, the number of elements in the set $X \cup Y$ is. . . . 

A

$3747$

B

$3748$

C

$3749$

D

$3750$

(IIT-2018)

Solution

$X=1,6,11,16,21,26,31,36,41,46,51,56,61,66,71,76,81,86, \ldots . .10086$

$Y=9,16,23,30,37,44,51,58,65,72,79,86, \ldots \ldots 14128$

$X \cap Y=16,51,86,121, \ldots \ldots \text { (A.P. } d=35, a=16)$

So, $n(X \cap Y)=t$

$\text { So, } 16+( t -1) \times 35 \leq 10086$

$t \leq 288.7$

$t =288$

$n(X \cup Y)=n(X)+n(Y)-n(X \cap Y)$

$=2018+2018-288$

$=3748$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.