Let $z_k=\cos \left(\frac{2 k \pi}{10}\right)+ i \sin \left(\frac{2 k \pi}{10}\right) ; k =1,2, \ldots 9$.
List $I$ | List $II$ |
$P.$ For each $z_k$ there exists a $z_j$ such that $z_k \cdot z_j=1$ | $1.$ True |
$Q.$ There exists a $k \in\{1,2, \ldots ., 9\}$ such that $z_{1 .} . z=z_k$ has no solution $z$ in the set of complex numbers. | $2.$ False |
$R.$ $\frac{\left|1-z_1\right|\left|1-z_2\right| \ldots . .\left|1-z_9\right|}{10}$ equals | $3.$ $1$ |
$S.$ $1-\sum_{k=1}^9 \cos \left(\frac{2 k \pi}{10}\right)$ equals | $4.$ $2$ |
Codes: $ \quad P \quad Q \quad R \quad S$
$\quad 1 \quad 2 \quad 4 \quad 3 $
$\quad 2 \quad 1 \quad 3 \quad 4 $
$\quad 1 \quad 2 \quad 3 \quad 4 $
$\quad 2 \quad 1 \quad 4 \quad 3 $
Find the modulus of $\frac{1+i}{1-i}-\frac{1-i}{1+i}$
If$z = \frac{{1 - i\sqrt 3 }}{{1 + i\sqrt 3 }},$then $arg(z) = $ ............. $^\circ$
If the conjugate of $(x + iy)(1 - 2i)$ be $1 + i$, then
The inequality $|z - 4|\, < \,|\,z - 2|$represents the region given by
Let $z$, $w \in C$ satisfy ${z^2} + \bar w = z$ and ${w^2} + \bar z = w$ then number of ordered pairs of complex numbers $(z, w)$ is equal to