The argument of the complex number $\frac{{13 - 5i}}{{4 - 9i}}$is
$\frac{\pi }{3}$
$\frac{\pi }{4}$
$\frac{\pi }{5}$
$\frac{\pi }{6}$
$\left| {(1 + i)\frac{{(2 + i)}}{{(3 + i)}}} \right| = $
Let $S=\left\{z \in C : z^{2}+\bar{z}=0\right\}$. Then $\sum \limits_{z \in S}(\operatorname{Re}(z)+\operatorname{Im}(z))$ is equal to$......$
The set of all $\alpha \in R$, for which $w = \frac{{1 + \left( {1 - 8\alpha } \right)z}}{{1 - z}}$ is a purely imaginary number, for all $z \in C$ satisfying $\left| z \right| = 1$ and ${\mathop{\rm Re}\nolimits} \,z \ne 1$, is
If $\alpha$ and $\beta$ are different complex numbers with $|\beta|=1,$ then find $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|$
Find the number of non-zero integral solutions of the equation $|1-i|^{x}=2^{x}$