माना कि $l_1, l_2, \ldots, l_{100}$ सार्वअंतर (common difference) $d_1$ वाली एक समांतर श्रेढ़ी (arithmetic progression) के क्रमागत पद (consecutive terms) हैं, एवं माना कि $w_1, w_2, \ldots, w_{100}$ सार्वअंतर (common difference) $d_2$ वाली एक दूसरी समांतर श्रेढ़ी (arithmetic progression) के क्रमागत पद है जहाँ $d_1 d_2=10$ है। प्रत्येक $i=1$, $2, \ldots, 100$ के लिए, माना कि $R_i$ एक आयत (rectangle) है जिसकी लम्बाई $l_i$, चौड़ाई $w_i$ एवं क्षेत्रफल $A_i$ है। यदि $A_{51}-A_{50}=1000$ है तब $A_{100}-A_{90}$ का मान . . . . . .है।
$18900$
$18901$
$18902$
$18903$
यदि एक समांतर श्रेढ़ी का प्रथम पद $3$ है तथा इसके प्रथम $25$ पदों का योग, इसके अगले $15$ पदों के योग के बराबर है, तो इस समांतर श्रेढ़ी का सार्वअंतर है
यदि $x=\sum_{n=0}^{\infty} a^n, y=\sum_{n=0}^{\infty} b^n, z=\sum_{n=0}^{\infty} c^n$ है, जहां $a , b , c$ समान्तर श्रेणी में है और $| a |<1,| b | < 1$, $| c | < 1, abc \neq 0$ है तब
उन सभी दो अंकों की संख्याओं का योगफल, जिन्हें $4$ से विभाजित करने पर शेषफल $1$ मिलता हो,
यदि ${\log _3}2,\;{\log _3}({2^x} - 5)$व ${\log _3}\left( {{2^x} - \frac{7}{2}} \right)$ समान्तर श्रेणी में हों, तो $x$ के मान होंगे
यदि किसी समांतर श्रेणी $25,22,19, \ldots$ के कुछ पदों का योगफल $116$ है तो अंतिम पद ज्ञात कीजिए।