यदि $\sin x + \cos x = \frac{1}{5},$ तब $\tan 2x$ का मान होगा

  • A

    $\frac{{25}}{{17}}$

  • B

    $\frac{{7}}{{25}}$

  • C

    $\frac{{25}}{7}$

  • D

    $\frac{{24}}{7}$

Similar Questions

${\cos ^2}A{(3 - 4{\cos ^2}A)^2} + {\sin ^2}A{(3 - 4{\sin ^2}A)^2} = $

माना $\cos (\alpha+\beta)=\frac{4}{5}$ और $\sin (\alpha-\beta)=\frac{5}{13},$ जहाँ $0 \leq \alpha, \beta \leq \frac{\pi}{4}$ तो $\tan 2 \alpha$ बराबर है

  • [IIT 1979]

यदि $\tan \beta = \cos \theta \tan \alpha ,$ तब  ${\tan ^2}\frac{\theta }{2} = $

$\frac{1}{{\sin 10^\circ }} - \frac{{\sqrt 3 }}{{\cos 10^\circ }} =$

  • [IIT 1974]

$\frac{{\sin 3\theta - \cos 3\theta }}{{\sin \theta + \cos \theta }} + 1 = $