Gujarati
7.Binomial Theorem
normal

Let $S=\{a+b \sqrt{2}: a, b \in Z \}, T_1=\left\{(-1+\sqrt{2})^n: n \in N \right\}$ and $T_2=\left\{(1+\sqrt{2})^n: n \in N \right\}$. Then which of the following statements is (are) $TRUE$?

$(A)$ $Z \cup T_1 \cup T_2 \subset S$

$(B)$ $T_1 \cap\left(0, \frac{1}{2024}\right)=\phi$, where $\phi$ denotes the empty set

$(C)$ $T_2 \cap(2024, \infty) \neq \phi$

$(D)$ For any given $a, b \in Z , \cos (\pi(a+b \sqrt{2}))+i \sin (\pi(a+b \sqrt{2})) \in Z$ if and only if $b=0$, where $i=\sqrt{-1}$

A

$A,B,C$

B

$A,B$

C

$A,C$

D

$A,B,D$

(IIT-2024)

Solution

$(A)(-1+\sqrt{2})^{ n }= m +\sqrt{2} n , m , n \in Z$

$(1+\sqrt{2})^{ n }= m _1+\sqrt{2} n _1, m _1, n _1 \in Z$

$\Rightarrow Z \cup T _1 \cup T _2 \subseteq S$

but $b \sqrt{2} \in S$ for negative $b \in Z$.

So $\quad Z \cup T _1 \cup T _2 \subset S$

$(B)(\sqrt{2}-1)^{ n }=\frac{1}{(\sqrt{2}+1)^2}<\frac{1}{2024}$

$\Rightarrow 2024<(\sqrt{2}+1)^{ n }, \exists n \in N$

$\Rightarrow T _1 \cap\left(0, \frac{1}{2024}\right) \neq \phi$

$(C)(1+\sqrt{2})^2>2024, \exists n \in N$

$\Rightarrow T _2 \cap(2024, \infty) \neq \phi$

$(D)\sin (\pi(a+b \sqrt{2})=0) \Rightarrow b=0, a \in Z$.

$\Rightarrow$ Options $(A), (C), (D)$ are Correct.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.