The term independent of $x$ in the expansion of ${\left( {\sqrt {\frac{x}{3}} + \frac{3}{{2{x^2}}}} \right)^{10}}$ will be

  • [IIT 1965]
  • A

    $3\over2$

  • B

    $5\over4$

  • C

    $5\over2$

  • D

    None of these

Similar Questions

In the binomial $(2^{1/3} + 3^{-1/3})^n$, if the ratio of the seventh term from the beginning of the expansion to the seventh term from its end is $1/6$ , then $n =$

Number of integral tems in the expansion of  $\left\{7^{\left(\frac{1}{2}\right)}+11^{\left(\frac{1}{6}\right)}\right\}^{824}$  is equal to..................

  • [JEE MAIN 2024]

If the coefficient of $x ^{15}$ in the expansion of $\left(a x^3+\frac{1}{b x^{\frac{1}{3}}}\right)^{15}$ is equal to the coefficient of $x^{-15}$ in the expansion of $\left(a x^{\frac{1}{3}}-\frac{1}{b x^3}\right)^{15}$, where $a$ and $b$ are positive real numbers, then for each such ordered pair $(a, b) :$

  • [JEE MAIN 2023]

If ${x^4}$ occurs in the ${r^{th}}$ term in the expansion of ${\left( {{x^4} + \frac{1}{{{x^3}}}} \right)^{15}}$, then $r = $

For some $n \neq 10$, let the coefficients of the $5^{\text {th }}, 6^{\text {th }}$ and $7^{\text {th }}$ terms in the binomial expansion of $(1+x)^{\text {n+4 }}$ be in $A.P.$ Then the largest coefficient in the expansion of $(1+x)^{n+4}$ is :

  • [JEE MAIN 2025]