Let $P(a\sec \theta ,\;b\tan \theta )$ and $Q(a\sec \varphi ,\;b\tan \varphi )$, where $\theta + \phi = \frac{\pi }{2}$, be two points on the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$. If $(h, k)$ is the point of intersection of the normals at $P$ and $Q$, then $k$ is equal to
$\frac{{{a^2} + {b^2}}}{a}$
$ - \left( {\frac{{{a^2} + {b^2}}}{a}} \right)$
$\frac{{{a^2} + {b^2}}}{b}$
$ - \left( {\frac{{{a^2} + {b^2}}}{b}} \right)$
The position of the point $(4, -3)$ with respect to the ellipse $2{x^2} + 5{y^2} = 20$ is
If two tangents drawn from a point $(\alpha, \beta)$ lying on the ellipse $25 x^{2}+4 y^{2}=1$ to the parabola $y^{2}=4 x$ are such that the slope of one tangent is four times the other, then the value of $(10 \alpha+5)^{2}+\left(16 \beta^{2}+50\right)^{2}$ equals
If $P \equiv (x,\;y)$, ${F_1} \equiv (3,\;0)$, ${F_2} \equiv ( - 3,\;0)$ and $16{x^2} + 25{y^2} = 400$, then $P{F_1} + P{F_2}$ equals
The locus of the mid point of the line segment joining the point $(4,3)$ and the points on the ellipse $x^{2}+2 y^{2}=4$ is an ellipse with eccentricity
An ellipse inscribed in a semi-circle touches the circular arc at two distinct points and also touches the bounding diameter. Its major axis is parallel to the bounding diameter. When the ellipse has the maximum possible area, its eccentricity is