Let $P$ be a point on the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$. Let the line passing through $P$ and parallel to $y$-axis meet the circle $x^2+y^2=9$ at point $Q$ such that $P$ and $Q$ are on the same side of the $x$-axis. Then, the eccentricity of the locus of the point $R$ on $P Q$ such that $P R: R Q=4: 3$ as $P$ moves on the ellipse, is :
$\frac{11}{19}$
$\frac{13}{21}$
$\frac{\sqrt{139}}{23}$
$\frac{\sqrt{13}}{7}$
Minimum distance between two points $P$ and $Q$ on the ellipse $\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{4} = 1$ , if difference between eccentric angles of $P$ and $Q$ is $\frac{{3\pi }}{2}$ , is
The equation of the ellipse whose vertices are $( \pm 5,\;0)$ and foci are $( \pm 4,\;0)$ is
The equation of an ellipse whose eccentricity is $1/2$ and the vertices are $(4, 0)$ and $(10, 0)$ is
If the point of intersections of the ellipse $\frac{ x ^{2}}{16}+\frac{ y ^{2}}{ b ^{2}}=1$ and the circle $x ^{2}+ y ^{2}=4 b , b > 4$ lie on the curve $y^{2}=3 x^{2},$ then $b$ is equal to:
Equation of the ellipse whose axes are the axes of coordinates and which passes through the point $(-3,1) $ and has eccentricity $\sqrt {\frac{2}{5}} $ is