Let $P$ be a point on the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$. Let the line passing through $P$ and parallel to $y$-axis meet the circle $x^2+y^2=9$ at point $Q$ such that $P$ and $Q$ are on the same side of the $x$-axis. Then, the eccentricity of the locus of the point $R$ on $P Q$ such that $P R: R Q=4: 3$ as $P$ moves on the ellipse, is :

  • [JEE MAIN 2024]
  • A

     $\frac{11}{19}$

  • B

     $\frac{13}{21}$

  • C

    $\frac{\sqrt{139}}{23}$

  • D

    $\frac{\sqrt{13}}{7}$

Similar Questions

The eccentricity of an ellipse whose centre is at the origin is $\frac{1}{2}$ . If one of its directices is $x = - 4$ then the equation of the normal to it at $\left( {1,\frac{3}{2}} \right)$ is

  • [JEE MAIN 2017]

An ellipse having foci at $(3, 3) $ and $(- 4, 4)$  and passing through the origin has eccentricity equal to

The equation of the ellipse whose latus rectum is $8$ and whose eccentricity is $\frac{1}{{\sqrt 2 }}$, referred to the principal axes of coordinates, is

The angle of intersection of ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ and circle ${x^2} + {y^2} = ab$, is

Let $E$ be the ellipse $\frac{x^2}{16}+\frac{y^2}{9}=1$. For any three distinct points $P, Q$ and $Q^{\prime}$ on $E$, let $M(P, Q)$ be the mid-point of the line segment joining $P$ and $Q$, and $M \left( P , Q ^{\prime}\right)$ be the mid-point of the line segment joining $P$ and $Q ^{\prime}$. Then the maximum possible value of the distance between $M ( P , Q )$ and $M \left( P , Q ^{\prime}\right)$, as $P, Q$ and $Q^{\prime}$ vary on $E$, is. . . . .

  • [IIT 2021]