- Home
- Standard 12
- Mathematics
माना $f(x) = {(x + 1)^2} - 1,\;\;(x \ge - 1)$, तब समुच्चय $S = \{ x:f(x) = {f^{ - 1}}(x)\} $ है
रिक्त
$\{0, -1\}$
$\{0, 1, -1\}$
$\left\{ {0,\; - 1,\;\frac{{ - 3 + i\sqrt 3 }}{2},\;\frac{{ - 3 - i\sqrt 3 }}{2}} \right\}$
Solution
(d) माना $f(x) = {(x + 1)^2} – 1,\,\,x \ge – 1$ चूँकि $f(x) = {f^{ – 1}}(x)$
$\therefore \,\,{(x + 1)^2} – 1 = \sqrt {1 + x} – 1$
$ \Rightarrow \,\,{(x + 1)^4} = 1 + x\,\, \Rightarrow \,\,(x + 1)\,\,[{(x + 1)^3} – 1] = 0$
$ \Rightarrow \,\,x = – 1$ या ${(x + 1)^3} = 1\, \Rightarrow x + 1 = 1,\,\,\omega ,\,\,{\omega ^2}$
$ \Rightarrow \,\,x = 0,\,\, – 1,\,\frac{{ – 3 + i\sqrt 3 }}{2},\,\,\frac{{ – 3 – i\sqrt 3 }}{2}.$
Similar Questions
माना कि $E_1=\left\{x \in R : x \neq 1\right.$ और $\left.\frac{x}{x-1}>0\right\}$
और $E_2=\left\{x \in E_1: \sin ^{-1}\left(\log _e\left(\frac{x}{x-1}\right)\right)\right.$ एक वास्तविक संख्या (real number) है $\}$
(यहाँ प्रतिलोम त्रिकोणमितीय फलन (inverse trigonometric function) $\sin ^{-1} x,\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ में मान धारण करता है।)
माना कि फलन $f: E_1 \rightarrow R , f(x)=\log _e\left(\frac{x}{x-1}\right)$ के द्वारा परिभाषित है
और फलन $g: E_2 \rightarrow R , g(x)=\sin ^{-1}\left(\log _e\left(\frac{x}{x-1}\right)\right)$ के द्वारा परिभाषित है।
सूची $I$ | सूची $II$ |
$P$ $f$ का परिसर (range) है | $1$ $\left(-\infty, \frac{1}{1- e }\right] \cup\left[\frac{ e }{ e -1}, \infty\right)$ |
$Q$ $g$ के परिसर में समाहित (contained) है | $2$ $(0,1)$ |
$R$ $f$ के प्रान्त (domain) में समाहित है | $3$ $\left[-\frac{1}{2}, \frac{1}{2}\right]$ |
$S$ $g$ का प्रान्त है | $4$ $(-\infty, 0) \cup(0, \infty)$ |
$5$ $\left(-\infty, \frac{ e }{ e -1}\right]$ | |
$6$ $(-\infty, 0) \cup\left(\frac{1}{2}, \frac{ e }{ e -1}\right]$ |
दिए हुए विकल्पों मे से सही विकल्प है: