माना चार संख्याओं $3,7, x$ तथा $y ( x > y )$ के माध्य तथा प्रसरण क्रमशः $5$ तथा $10$ है। तो चार संख्याओं $3+2 x , 7+2 y , x + y$ तथा $x - y$ का माध्य ............ है
$10$
$11$
$12$
$48$
माना एक कक्षा में $7$ विद्यार्थी है। गणित परीक्षा में इन छात्रों के औसत अंक $62$ तथा इनका प्रसरण $20$ है। एक विद्यार्थी परीक्षा में अनुत्तीर्ण हो जाता है यदि उसे $50$ से कम अंक प्राप्त होते है, तो सबसे खराब स्थिति में, असफल छात्रों की संख्या हो सकती है
माना छः संख्याएं $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3, \mathrm{a}_4, \mathrm{a}_5, \mathrm{a}_6$ समान्तर श्रेणी में है और $\mathrm{a}_1+\mathrm{a}_3=10$ है। यदि इन छ: संख्याओं का माध्य $\frac{19}{2}$ है और इनका प्रसरण $\sigma^2$ है, तब $8 \sigma^2$ का मान है :
मान लीजिये की $n \geq 3$ एक प्राकृत संख्या है। दी गयी संख्याओं की सूची $x_1, x_2, \ldots, x_n$ का औसत तथा मानक विचलन क्रमानुसार $\mu$ और $\sigma$ है। एक नयीसंख्याओं की सूची $y_1, y_2, \ldots, y_n$ इस प्रकार बनाई जाती हैं कि $y_1=\frac{x_1+x_2}{2}, y_2=\frac{x_1+x_2}{2}$ और प्रत्येक $j=3,4, \ldots, n$ के लिए $y_j=x_j$ । यदि नयी सूची का औसत तथा मानक विचलन क्रमानुसार $\hat{\mu}$ और $\hat{\sigma}$ है तो निम्नलिखित में से कौन सा कथन आवश्यक रूप से सत्य है?
आंकडों
$x_i$ | $0$ | $1$ | $5$ | $6$ | $10$ | $12$ | $17$ |
$f_i$ | $3$ | $2$ | $3$ | $2$ | $6$ | $3$ | $3$ |
का प्रसरण $\sigma^2$ बराबर है ..........
यदि आठ संख्याओं $3,7,9,12,13,20, x$ तथा $y$ के माध्य तथा प्रसरण क्रमश: $10$ तथा $25$ हैं, तो $x \cdot y$ बराबर हैं