Let $R= \{(3, 3) (5, 5), (9, 9), (12, 12), (5, 12), (3, 9), (3, 12), (3, 5)\}$ be a relation on the set $A= \{3, 5, 9, 12\}.$ Then, $R$ is

  • [JEE MAIN 2013]
  • A

    reflexive, symmetric but not transitive.

  • B

    symmetric, transitive but not reflexive.

  • C

    an equivalence relation.

  • D

    reflexive, transitive but not symmetric.

Similar Questions

Show that each of the relation $R$ in the set $A=\{x \in Z: 0 \leq x \leq 12\},$ given by $R =\{( a , b ): a = b \}$ is an equivalence relation. Find the set of all elements related to $1$ in each case.

The minimum number of elements that must be added to the relation $R =\{( a , b ),( b , c )$, (b, d) $\}$ on the set $\{a, b, c, d\}$ so that it is an equivalence relation, is $.........$

  • [JEE MAIN 2023]

Let $N$ denote the set of all natural numbers. Define two binary relations on $N$ as $R_1 = \{(x,y) \in  N \times  N : 2x + y= 10\}$ and $R_2 = \{(x,y) \in  N\times  N : x+ 2y= 10\} $. Then

  • [JEE MAIN 2018]

Among the relations $S =\left\{( a , b ): a , b \in R -\{0\}, 2+\frac{ a }{ b } > 0\right\}$ And $T =\left\{( a , b ): a , b \in R , a ^2- b ^2 \in Z \right\}$,

  • [JEE MAIN 2023]

Let $R$ and $S$ be two non-void relations on a set $A$. Which of the following statements is false