Let ${a_n}$ be the ${n^{th}}$ term of the G.P. of positive numbers. Let $\sum\limits_{n = 1}^{100} {{a_{2n}}} = \alpha $ and $\sum\limits_{n = 1}^{100} {{a_{2n - 1}}} = \beta $, such that $\alpha \ne \beta $,then the common ratio is

  • [IIT 1992]
  • A

    $\frac{\alpha }{\beta }$

  • B

    $\frac{\beta }{\alpha }$

  • C

    $\sqrt {\frac{\alpha }{\beta }} $

  • D

    $\sqrt {\frac{\beta }{\alpha }} $

Similar Questions

If $a, b$ and $c$ be three distinct numbers in $G.P.$ and $a + b + c = xb$ then $x$ can not be

  • [JEE MAIN 2019]

If ${\log _a}x,\;{\log _b}x,\;{\log _c}x$ be in $H.P.$, then $a,\;b,\;c$ are in

Let $M=2^{30}-2^{15}+1$, and $M^2$ be expressed in base $2$.The number of $1$'s in this base $2$ representation of $M^2$ is

  • [KVPY 2020]

If $p,\;q,\;r$ are in one geometric progression and $a,\;b,\;c$ in another geometric progression, then $cp,\;bq,\;ar$ are in

If the $n^{th}$ term of geometric progression $5, - \frac{5}{2},\frac{5}{4}, - \frac{5}{8},...$ is $\frac{5}{{1024}}$, then the value of $n$ is