8. Sequences and Series
medium

Let ${a_n}$ be the ${n^{th}}$ term of the G.P. of positive numbers. Let $\sum\limits_{n = 1}^{100} {{a_{2n}}} = \alpha $ and $\sum\limits_{n = 1}^{100} {{a_{2n - 1}}} = \beta $, such that $\alpha \ne \beta $,then the common ratio is

A

$\frac{\alpha }{\beta }$

B

$\frac{\beta }{\alpha }$

C

$\sqrt {\frac{\alpha }{\beta }} $

D

$\sqrt {\frac{\beta }{\alpha }} $

(IIT-1992)

Solution

(a) Let the G.P. be $a,\;ar,\;a{r^2}…….,$ then

$\alpha = \sum\limits_{n = 1}^{100} {{a_{2n}}} = {a_2} + {a_4} + …….{\rm{upto}}\;100\;{\rm{terms}}$

$ = ar + a{r^3} + …….{\rm{upto}}\;100\;{\rm{terms}}$

$ = ar(1 + {r^2} + {r^4} + ……{r^{198}})$ and $\beta = \sum\limits_{n = 1}^{100} {{a_{2n – 1}}} = a + a{r^3} + …..{\rm{upto}}\;100\;{\rm{terms}}$

$ = a(1 + {r^2} + …… + {r^{198}})$

Obviously $\frac{\alpha }{\beta } = r$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.