The sum of the first five terms of the series $3 + 4\frac{1}{2} + 6\frac{3}{4} + ......$ will be
$39\frac{9}{{16}}$
$18\frac{3}{{16}}$
$39\frac{7}{{16}}$
$13\frac{9}{{16}}$
If five $G.M.’s$ are inserted between $486$ and $2/3$ then fourth $G.M.$ will be
The $6^{th}$ term of a $G.P.$ is $32$ and its $8^{th}$ term is $128$, then the common ratio of the $G.P.$ is
The number $111..............1$ ($91$ times) is a
The numbers $(\sqrt 2 + 1),\;1,\;(\sqrt 2 - 1)$ will be in
If $\frac{6}{3^{12}}+\frac{10}{3^{11}}+\frac{20}{3^{10}}+\frac{40}{3^{9}}+\ldots . .+\frac{10240}{3}=2^{ n } \cdot m$, where $m$ is odd, then $m . n$ is equal to