यदि $E = \{ 1,2,3,4\} $ तथा $F = \{ 1,2\} $, तब समुच्चय $E$ से $F$ में बनने वाले आच्छादक फलनों की संख्या है
$14$
$16$
$12$
$8$
$x \in R , x \neq 0, x \neq 1$ के लिए माना $f_{0}(x)=\frac{1}{1-x}$ तथा $f_{n+1}(x)=f_{0}\left(f_{n}(x)\right), n=0,1,2, \ldots$ है, तो $f_{100}(3)+f_{1}\left(\frac{2}{3}\right)+f_{2}\left(\frac{3}{2}\right)$ बराबर है
सिद्ध कीजिए कि $f(x)=|x|$ द्वारा प्रद्त मापांक फलन $f: R \rightarrow R$, न तो एकेकी है और न आच्छादक है, जहाँ $|x|$ बराबर $x$, यदि $x$ धन या शून्य है तथा $|x|$ बराबर $-x$, यदि $x$ रुण है।
माना $A =\{ a , b , c \}$ तथा $B =\{1,2,3,4\}$ हैं, तो समुच्चय $C =\{ f : A \rightarrow B \mid 2 \in f ( A )$ तथा $f$ एकैकी नहीं है $\}$ के अवयवों की संख्या है
एक वास्तविक फलन $f(x)$, $f(x - y) = f(x)f(y) - f(a - x)f(a + y)$ फलन समीकरण को संतुष्ट करता है, यहाँ $a$ दिया गया अचर है व $f(0) = 1$, तब $f(2a - x) = $
फलन $f(x) = \;|px - q|\; + r|x|,\;x \in ( - \infty ,\;\infty )$, जहाँ $p > 0,\;q > 0,\;r > 0$ का केवल एक बिन्दु पर निम्निष्ठ मान होगा यदि