1.Relation and Function
easy

Suppose $f:[2,\;2] \to R$ is defined by $f(x) = \left\{ \begin{array}{l} - 1\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{for}}\; - 2 \le x \le 0\\x - 1\;\;\;\;\;{\rm{for}}\;0 \le x \le 2\end{array} \right.$, then $\{ x \in ( - 2,\;2):x \le 0$ and $f(|x|) = x\} = $

A

$\{ - 1\} $

B

${0}$

C

$\{ - 1/2\} $

D

$\phi $

Solution

(c) By verification, $f\left( {\left| { – \frac{1}{2}} \right|} \right) = f\left( {\frac{1}{2}} \right) = \frac{1}{2} – 1 = – \frac{1}{2}$

Hence $f(|x|) = x$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.