Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

Let $'E'$  be the ellipse $\frac{{{x^2}}}{9}$$+$$\frac{{{y^2}}}{4}$ $= 1$ $\& $ $'C' $ be the circle $x^2 + y^2 = 9.$ Let $P$ $\&$ $Q$ be the points $(1 , 2) $ and $(2, 1)$  respectively. Then :

A

$Q$  lies inside $C$  but outside $E$

B

$Q$  lies outside both $C$  $\&$ $ E$

C

$P$  lies inside both $C$ $ \&$ $E$

D

$P$ lies inside $C$  but outside $E.$

Solution

$E :\left( x ^{2} / 9\right)+\left( y ^{2} / 4\right)=1$ and $C : x ^{2}+ y ^{2}=9$

given: $P (1,2)$

Now $1^{2}+2^{2}-9<0 \Rightarrow P$ is inside circle $C$.

also $(1 / 9)+(4 / 4)>1 \Rightarrow P$ is outside ellipse $E$

For $Q(2,1)$

Now $2^{2}+1^{2}-9<0 \Rightarrow Q$ is inside circle $C$.

also $(4 / 9)+(1 / 4)<1 \Rightarrow Q$ is inside ellipse $E$

$\Rightarrow P$ lies inside $C$ but outside $E$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.