The equation of the ellipse whose latus rectum is $8$ and whose eccentricity is $\frac{1}{{\sqrt 2 }}$, referred to the principal axes of coordinates, is

  • A

    $\frac{{{x^2}}}{{18}} + \frac{{{y^2}}}{{32}} = 1$

  • B

    $\frac{{{x^2}}}{8} + \frac{{{y^2}}}{9} = 1$

  • C

    $\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{32}} = 1$

  • D

    $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{24}} = 1$

Similar Questions

Let $P$ be a point on the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$. Let the line passing through $P$ and parallel to $y$-axis meet the circle $x^2+y^2=9$ at point $Q$ such that $P$ and $Q$ are on the same side of the $x$-axis. Then, the eccentricity of the locus of the point $R$ on $P Q$ such that $P R: R Q=4: 3$ as $P$ moves on the ellipse, is :

  • [JEE MAIN 2024]

Let $P$ is any point on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ . $S_1$ and $S_2$ its foci then maximum area of $\Delta PS_1S_2$ is (in square units)

If $\frac{{\sqrt 3 }}{a}x + \frac{1}{b}y = 2$ touches the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ then its, eccentric angle $\theta $ is equal to: ................ $^o$

If the normal at one end of the latus rectum of an ellipse  $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ passes through one end of the minor axis then :

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{36}+\frac{y^2} {16}=1$