- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
easy
The equation of the ellipse whose latus rectum is $8$ and whose eccentricity is $\frac{1}{{\sqrt 2 }}$, referred to the principal axes of coordinates, is
A
$\frac{{{x^2}}}{{18}} + \frac{{{y^2}}}{{32}} = 1$
B
$\frac{{{x^2}}}{8} + \frac{{{y^2}}}{9} = 1$
C
$\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{32}} = 1$
D
$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{24}} = 1$
Solution
(c) $\frac{{2{b^2}}}{a} = 8,$$e = \frac{1}{{\sqrt 2 }}$
${a^2} = 64,\,{b^2} = 32$
Hence required equation of ellipse is
$\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{32}} = 1$.
Standard 11
Mathematics