Let $[ {\varepsilon _0} ]$ denote the dimensional formula of the permittivity of vacuum. If $M =$ mass, $L=$ length, $T =$ time and $A=$ electric current, then:
$\;{\varepsilon _0}=M^{-1}L^{-3}T^2A$
$\;{\varepsilon _0}=M^{-1}L^{-3}T^4A^2$
$\;{\varepsilon _0}=M^{-1}L^2T^{-1}A^{-2}$
${\varepsilon _0}=M^{-1}L^2T^{-1}A$
Write principle of Homogeneity of dimension.
The dimensions of couple are
Dimensional formula of magnetic flux is
Dimensions of strain are
The equation of stationary wave is
$\mathrm{y}=2 \mathrm{a} \sin \left(\frac{2 \pi \mathrm{nt}}{\lambda}\right) \cos \left(\frac{2 \pi \mathrm{x}}{\lambda}\right)$
Which of the following is NOT correct