1.Relation and Function
hard

સંબંધ $R =\{(a, b): \operatorname{gcd}(a, b)=1,2 a \neq b , a , b \in Z \}$ એ :

A

પરંપરિત છે પરંતુ સ્વવાચક નથી

B

સંમિત છે પરંતુ પરંપરિત નથી

C

સ્વવાચક છે પરંતુ સંમિત નથી

D

સંમિત પણ નથી અને પરંપરિત પણ નથી

(JEE MAIN-2023)

Solution

Reflexive : $(a, a) \Rightarrow \operatorname{gcd}$ of $(a, a)=1$

Which is not true for every a $\epsilon Z$.

Symmetric:

Take $a =2, b =1 \Rightarrow \operatorname{gcd}(2,1)=1$

Also $2 a=4 \neq b$

Now when $a =1, b =2 \Rightarrow \operatorname{gcd}(1,2)=1$

Also now $2 a =2= b$

Hence $a=2 b$

$\Rightarrow R$ is not Symmetric

Transitive:

Let $a =14, b =19, c =21$

$\operatorname{gcd}( a , b )=1$

$\operatorname{gcd}(b, c)=1$

$\operatorname{gcd}( a , c )=7$

Hence not transitive

$\Rightarrow R$ is neither symmetric nor transitive.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.