જો $S$ એ વાસ્તવિક સંખ્યાઓનો ગણ હોય તો ગણ $S$ પર વ્યાખિયાયિત સંબંધ $R = \{\ (a, b) : 1 + ab > 0\ \}$ એ ............

  • A

    સ્વવાચક અને સમિત છે પરંતુ પરંપરિત નથી.

  • B

    સ્વવાચક અને પરંપરિત છે પરંતુ સમિત નથી

  • C

    સમિત અને પરંપરિત છે પરંતુ સ્વવાચક નથી

  • D

    સામ્ય સંબંધ છે.

Similar Questions

જો $N$ એ પ્રાકૃતિક  સંખ્યાનો ગણ છે અને સંબંધ $R$ એ $N$ પર આ મુજબ વ્યાખ્યાયિત છે  $R=\left\{(x, y) \in N \times N: x^{3}-3 x^{2} y-x y^{2}+3 y^{3}=0\right\} $ તો સંબંધ $R$ એ . . . .

  • [JEE MAIN 2021]

સાબિત કરો કે $R$ પર વ્યાખ્યાયિત સંબંધ $R =\{(a, b): a \leq b\},$ એ સ્વવાચક અને પરંપરિત છે, પરંતુ સંમિત સંબંધ નથી.

જો સંબંધ ${R_1}$ એ ${R_1} = \{ (a,\,b)|a \ge b,\,a,\,b \in R\} $ દ્વારા વ્યાખ્યાયિત હોય તો ${R_1}$ એ . . . .   

ગણ $\{1,2,3,4\}$ પર સંબંધ $R$ એ $R =\{(1,2),\,(2,2),\,(1,1),\,(4,4)$ $(1,3),\,(3,3),\,(3,2)\}$ દ્વારા આપેલ છે. 

જો $R$ એ ગણ $A$ પરનો સામ્ય સંબંધ હોય તો ${R^{ - 1}}$ એ . . . . થાય.