જો $y = f (x)$ અને $y = g (x)$ એ $[0,2]$ પર બે વિકલનીય વિધેય છે કે જેથી $f(0) = 3,$ $f(2) = 5$ , $g (0) = 1$ અને $g(2) = 2$ થાય. જો ઓછામાં ઓછો એક $c \in \left( {0,2} \right)$ મળે કે જેથી $f'(c)=kg'(c)$ થાય તો $k$ મેળવો.
$2$
$3$
$\frac{1}{2}$
$1$
જો $(1 -x + 2x^2)^n$ = $a_0 + a_1x + a_2x^2+..... a_{2n}x^{2n}$ , $n \in N$ , $x \in R$ અને $a_0$ , $a_2$ અને $a_1$ એ સમાંતર શ્રેણીમાં હોય તો $n$ ની કેટલી શક્ય કિમંતો મળે.
વિધેય $x + {1 \over x},x \in [1,\,3]$, તો મધ્યકમાન પ્રમેયપરથી $c$ ની કિમંત મેળવો.
અંતરાલ $[0, 1]$ માં નીચે આપેલ વિધેય માટે લાંગ્રજય મધ્યકમાન પ્રમેય લાગુ ન પાડી શકાય.
જો વિધેય $f(x) = x(x-1)(x-2);\, x \in [0,\, 1/2]$ માટે મધ્યકમાન પ્રમેયનું પાલન કરે છે તો $C =? $
$[2, 4]$ પર વ્યાખ્યાયિત વિધેય $f(x)=x^{2}$ માટે $[2, 4]$ પર મધ્યકમાન પ્રમેય ચકાસો.