જો $y = f (x)$ અને  $y = g (x)$ એ $[0,2]$ પર બે વિકલનીય વિધેય છે કે જેથી $f(0) = 3,$ $f(2) = 5$ , $g (0) = 1$ અને $g(2) = 2$ થાય. જો ઓછામાં ઓછો એક $c \in \left( {0,2} \right)$ મળે કે જેથી $f'(c)=kg'(c)$ થાય તો $k$ મેળવો.

  • A

    $2$

  • B

    $3$

  • C

    $\frac{1}{2}$

  • D

    $1$

Similar Questions

જો $f(x)$ એ $[0, 2]$ માં મધ્યક માન પ્રમેયનું પાલન કરે છે . જો $f (0) = 0$ અને દરેક $x$ કે જે $[0, 2]$ માટે $|f'(x)|\, \le {1 \over 2}$ તો . . . .

જો વિધેય $f(x) = {x^3} - 6{x^2} + ax + b$ એ અંતરાલ $[1,\,3]$ માં રોલનું પ્રમેય પાલન કરે છે અને $f'\left( {{{2\sqrt 3 + 1} \over {\sqrt 3 }}} \right) = 0$ તો $a =$ ..............

જો $2a + 3b + 6c = 0 $ હોય, તો સમીકરણ $ax^2 + bx + c = 0$  નું ઓછામાં ઓછું એક બીજ કયા અંતરાલમાં હોય ?

વિધેય $f(x) = {(x - 3)^2}$ એ અંતરાલ $[3, 4]$ માં મધ્યકમાન પ્રમેયનું પાલન કરે છે . જો વક્ર $y = {(x - 3)^2}$ પરનું બિંદુ મેળવો કે જેનો સ્પર્શકનો ઢાળએ બિંદુઑ $(3, 0)$ અને $(4, 1)$ ને જોડતી રેખાને સમાંતર છે .

જો $c = \frac {1}{2}$ અને $f(x) = 2x -x^2$ એ અંતરાલ $x$ પર મધ્યકમાન પ્રમેય પાલન કરે છે તો $x$ મેળવો.