माना एक रेखा $L : 2 x + y = k , k >0$, अतिपरवलय $x ^{2}- y ^{2}=3$ को स्पर्श करती है। यदि रेखा $L$, परवलय, $y ^{2}=\alpha x$ को भी स्पर्श करती है, तो $\alpha$ बराबर है -
$24$
$-12$
$-24$
$12$
अतिपरवलय $\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1$ के लिए $'\alpha '$ का मान परिवर्तित करने पर निम्न में से क्या अचर रहेगा
यदि $4{x^2} + p{y^2} = 45$ व ${x^2} - 4{y^2} = 5$ लाम्बिक प्रतिच्छेदित करते हैं तो $ p$ का मान है
शांकव $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ के बिन्दु $(a\sec \theta ,\;b\tan \theta )$ पर स्पर्श रेखा का समीकरण है
अतिपरवलय के किसी बिन्दु से इसकी अनन्तस्पर्शियों पर खींचे लम्बों का गुणनफल है
यदि अतिपरवलय $16 x ^{2}-9 y ^{2}=144$ की नियता (directrix) $5 x+9=0$ है, तो इसका संगत नाभिकेन्द्र है