10-2. Parabola, Ellipse, Hyperbola
hard

माना एक रेखा $L$, रेखाओं $bx +10 y -8=0$ तथा $2 x -3 y =0, b \in R -\left\{\frac{4}{3}\right\}$ के प्रतिच्छेदन बिन्दु से होकर जाती है। यदि रेखा $L$, बिन्दु $(1,1)$ से भी होकर जाती है तथा वृत्त $17\left( x ^2+ y ^2\right)=16$ को स्पर्श करती है, तो दीर्घवृत्त $\frac{x^2}{5}+\frac{y^2}{b^2}=1$ की उत्केन्द्रता है:

A

$\frac{2}{\sqrt{5}}$

B

$\sqrt{\frac{3}{5}}$

C

$\frac{1}{\sqrt{5}}$

D

$\sqrt{\frac{2}{5}}$

(JEE MAIN-2022)

Solution

Line is passing through intersection of $b x+10 y-8=0$ and $2 x-3 y=0$ is $(b x+10 y-8)+\lambda(2 x-3 y)=0$. As line is passing through $(1,1)$ so $\lambda=b+2$

Now line $(3 b+4) x-(3 b-4) y-8=0$ is tangent to circle $17\left(x^{2}+y^{2}\right)=16$

So $\frac{8}{\sqrt{(3 b+4)^{2}+(3 b-4)^{2}}}=\frac{4}{\sqrt{17}}$

$b^{2}=2 \Rightarrow e=\sqrt{\frac{3}{5}}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.