कुल आवेश $2 Q$ को त्रिज्या $R$ के गोले में इस प्रकार वितरित करते हैं कि आवेश घनत्व सम्बन्ध $\rho( r )= kr$ से दिया जाता है जहाँ $r$, केन्द्र से दूरी है। दो बराबर $Q$ आवेशों $A$ तथा $B$ को केन्द्र से $a$ दूरी पर व्यासीय विपरीत बिन्दुओं पर रखा गया है। यदि $A$ और $B$ कोई बल अनुभव नहीं करते हैं, तो ?

  • [JEE MAIN 2019]
  • A

    $a = \frac{{3R}}{{{2^{1/4}}}}$

  • B

    $a = {2^{ - 1/4}}R$

  • C

    $a = {8^{ - 1/4}}R$

  • D

    $a = R/\sqrt 3 $

Similar Questions

$12\, cm$ त्रिज्या वाले एक गोलीय चालक के पृष्ठ पर $1.6 \times 10^{-7} \,C$ का आवेश एकसमान रूप से वितरित है।

$(a)$ गोले के अंदर

$(b)$ गोले के ठीक बाहर

$(c)$ गोले के केंद्र से $18 cm$ पर अवस्थित, किसी बिंदु पर विध्यूत क्षेत्र क्या होगा?

एक इलैक्ट्रॉन $+\sigma$ पृष्ठ आवेश घनत्व वाली एक समान आवेशित अनंत आकार की समतल चादर $s$ के विद्युत क्षेत्र के कारण गति कर रहा है। $\mathrm{t}=0$ पर इलेक्ट्रॉन $\mathrm{S}$ से $1$ मी. की दूरी पर है और इसकी चाल $1$ मी./से. है। यदि $\mathrm{t}=1$ पर इलैक्ट्रॉन $\mathrm{S}$ से टकराता है तब $\sigma$ का अधिकतम मान $\alpha\left[\frac{\mathrm{m} \epsilon_0}{\mathrm{e}}\right] \frac{\mathrm{C}}{\mathrm{m}^2}$ है। $\alpha$ का मान है।

  • [JEE MAIN 2024]

दो अनन्त लम्बाई के समान्तर तार जिन पर रेखीय आवेश घनत्व क्रमश: ${\lambda _1}$ और ${\lambda _2}$ हैं, $R$ मीटर की दूरी पर रखे हैं। उनमें से किसी एक की एकांक लम्बाई पर बल होगा $\left( {K = \frac{1}{{4\pi {\varepsilon _0}}}} \right)$

गाउस नियम का उपयोग किए बिना किसी एकसमान रैखिक आवेश घनत्व $\lambda$ के लंबे पतले तार के कारण विध्युत क्षेत्र के लिए सूत्र प्राप्त कीजिए

संलग्न चित्र में दर्शाए गए तीन पराविधुत (dielectric) गोलो पर, जिनकी त्रिज्याऐं क्रमशः $R / 2, R$ तथा $2 R$ है, आवेश $Q, 2 Q$ तथा $4 Q$ क्रमशः समान रूप से वितरित है। यदि बिन्दु $P$, जो प्रत्येक गोले के केन्द्र से $R$ दूरी पर है, पर गोले $1,2$ तथा $3$ के कारण विधुत क्षेत्र का परिमाण क्रमशः $E _1, E _2$ तथा $E _3$ है तब

  • [IIT 2014]