दिया है, एक गोलीय सममित आवेश वितरण जिसमें आवेश घनत्व इस प्रकार परिवर्तित होता है।

$\rho(r)=\rho_{0}\left(\frac{5}{4}-\frac{ r }{ R }\right), r=R$ तक और $\rho(r)=0$

$r>R$ के लिए जहाँ $r$ मूलबिन्दु से दूरी है। मूलबिन्दू से दूरी $r(r< R)$ पर विघुत-क्षेत्र इस प्रकार दिया जाता है

  • [AIEEE 2010]
  • A

    $\frac{{{\rho _o}r}}{{3{\varepsilon _0}}}\;\left( {\frac{5}{4} - \frac{r}{R}} \right)\;\;\;\;\;\;$

  • B

    $\frac{{4\pi {\rho _0r}}}{{3{\varepsilon _0}}}\;\left( {\frac{5}{3} - \frac{r}{R}} \right)$

  • C

    $\frac{{{\rho _o}r}}{{4{\varepsilon _0}}}\;\left( {\frac{5}{3} - \frac{r}{R}} \right)$

  • D

    $\frac{{4\pi {\rho _0r}}}{{3{\varepsilon _0}}}\;\left( {\frac{5}{4} - \frac{r}{R}} \right)$

Similar Questions

परमाणु के प्रारंभिक प्रतिरूप में यह माना गया था कि आवेश $Z e$ का बिंदु आमाप का धनात्मक नाभिक होता है जो त्रिज्या $R$ तक एकसमान घनत्व के ऋणावेश से घिरा हुआ है। परमाणु पूर्ण रूप में विध्यूत उदासीन है। इस प्रतिसूप के लिए नाभिक से $r$ दूरी पर विध्यूत क्षेत्र कितना है?

$10 \,cm$ त्रिज्या के किसी गोलीय चालक पर $3.2 \times 10^{-7}\, C$ आवेश एकसमान रूप से वितरित है।इस गोले के केन्द्र से $15\, cm$ दूरी पर विध्यूत क्षेत्र का परिमाण क्या है ?

$\left(\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} Nm ^{2} / C ^{2}\right)$

  • [NEET 2020]

त्रिज्या $'a'$ तथा $'b'$ के दो एक-केन्द्री गोलों (चित्र देखिये) के बीच के स्थान में आयतन आवेश-घनत्व $\rho=\frac{A}{r}$ है, जहाँ $A$ स्थिरांक है तथा $r$ केन्द्र से दूरी है। गोलों के केन्द्र पर एक बिन्दु-आवेश $Q$ है। $'A'$ का वह मान बताये जिससे गोलों के बीच के स्थान में एकसमान वैध्युत-क्षेत्र हो:

  • [JEE MAIN 2016]

यहाँ आरेख में, किसी गोलाकार कोश (शैल) के कोटर के भीतर दो बिन्दु-आवेश $+ Q$ तथा $- Q$ दर्शाये गये हैं। ये आवेश कोटर की सतह के निकट इस प्रकार रखे गये हैं कि, एक आवेश कोश के केन्द्र की एक ओर है और दूसरा केन्द्र के विपरीत दूसरी ओर। यदि, भीतरी तथा बाहरी सतहों (पृष्ठों) पर, पृष्ठ आवेश क्रमशः $\sigma_{1}$ तथा $\sigma_{2}$ और नेट आवेश क्रमशः $Q_{1}$ तथा $Q _{2}$ हो तो :

  • [JEE MAIN 2015]

कुल आवेश $2 Q$ को त्रिज्या $R$ के गोले में इस प्रकार वितरित करते हैं कि आवेश घनत्व सम्बन्ध $\rho( r )= kr$ से दिया जाता है जहाँ $r$, केन्द्र से दूरी है। दो बराबर $Q$ आवेशों $A$ तथा $B$ को केन्द्र से $a$ दूरी पर व्यासीय विपरीत बिन्दुओं पर रखा गया है। यदि $A$ और $B$ कोई बल अनुभव नहीं करते हैं, तो ?

  • [JEE MAIN 2019]