આપેલ ઉપવલય માટે નાભિના યામ, શિરોબિંદુઓ તથા પ્રધાન અક્ષ તથા ગૌણ અક્ષની લંબાઈ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ શોધોઃ
$\frac{x^{2}}{16}+\frac {y^2} {9}=1$
The given equation is $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ or $\frac{x^{2}}{4^{2}}+\frac{y^{2}}{3^{2}}=1$
Here, the denominator of $\frac{x^{2}}{16}$ is greater than the denominator of $\frac{y^{2}}{9}$.
Therefore, the major axis is along the $x-$ axis, while the minor axis is along the $y-$ axis.
On comparing the given equation with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,$ we obtain $a=4$ and $b=3$
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{16-9}=\sqrt{7}$
Therefore,
The coordinates of the foci are $(\pm \sqrt{7}, \,0)$
The coordinates of the vertices are $(±4,\,0)$
Length of major axis $=2 a=8$
Length of minor axis $=2 b=6$
Eccentricity, $e=\frac{c}{a}=\frac{\sqrt{7}}{4}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 9}{4}=\frac{9}{2}$
જો $OB$ એ ઉપવલયની અર્ધ ગૌણ અક્ષ, $F_1$ અને $F_2$ એ નાભીઓ અને $F_1B$ અને $F_2B$ વચ્ચેનો ખૂણો કાટકોણ હોય તો ઉપવલયની ઉત્કેન્દ્ર્તાનો વર્ગ કેટલો થાય ?
એક ઉપવલય પરનું બિંદુ $(4, -1)$ ને રેખા $x + 4y - 10 = 0$ સ્પર્શેં છે જો તેની અક્ષો યામાક્ષો સાથે સાંપતી હોય, તો તેનું સમીકરણ $(a > b)$
જો ઉપવલયની ગૈાણ અક્ષના અત્યંબિંદુએ નાભિ સાથે આંતરેલો ખૂણો $\frac{\pi }{2}$ હોય તો ઉપવલયની ઉકેન્દ્રતા મેળવો.
ઉપવલય $\frac{{{x^2}}}{{16}}\,\, + \;\,\frac{{{y^2}}}{9}\,\, = \,\,1$ની નાભિઓમાંથી પસાર થતાં અને $(0, 3)$ કેન્દ્ર ધરાવતા વર્તૂળની ત્રિજ્યા =
જો ઉપવલય $x^{2}+4 y^{2}=4$ નો સ્પર્શકએ મુખ્ય અક્ષના અંત્ય બિંદુ આગળ ના સ્પર્શકોને બિંદુ $\mathrm{B}$ અને $\mathrm{C}$ આગળ મળે છે તો વર્તુળ કે જેનો વ્યાસ $\mathrm{BC}$ હોય તે .. . બિંદુમાંથી પસાર થાય.