एक दीर्घवत्त, $E : \frac{ x ^{2}}{ a ^{2}}+\frac{ y ^{2}}{ b ^{2}}=1, a ^{2}> b ^{2}$, बिन्दु $\left(\sqrt{\frac{3}{2}}, 1\right)$ से होकर जाता है तथा उसकी उत्केन्द्रता $\frac{1}{\sqrt{3}}$ है। यदि एक वत्त जिसका केन्द्र $E$ की नाभि $F (\alpha, 0), \alpha>0$ पर और त्रिज्या $\frac{2}{\sqrt{3}}$ है, दीर्घवत्त $E$ को दो बिन्दुओं $P$ तथा $Q$ पर काटता है, तो $PQ ^{2}$ बराबर है

  • [JEE MAIN 2021]
  • A

    $\frac{8}{3}$

  • B

    $\frac{4}{3}$

  • C

    $3$

  • D

    $\frac{16}{3}$

Similar Questions

यदि किसी दीर्घवृत्त की उत्केन्द्रता $\frac{1}{{\sqrt 2 }}$ हो, तो उसका नाभिलम्ब होगा

दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के बिन्दु $(a\cos \theta ,\;b\sin \theta )$ पर अभिलम्ब का समीकरण होगा

प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए

नाभियाँ $(\pm 3,0), a=4$

यदि किसी $a \in R$, के लिए दीर्घवृत्त $\frac{ x ^{2}}{ a ^{2}}+\frac{ y ^{2}}{9}=1$ की एक स्पर्श रेखा $3 x +4 y =12 \sqrt{2}$ है, तो दीर्घवृत्त की नाभियों के बीच की दूरी है 

  • [JEE MAIN 2020]

दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए

$\frac{x^{2}}{25}+\frac{y^{2}}{100}=1$