- Home
- Standard 12
- Mathematics
Let for $a \ne {a_1} \ne 0,$ $f\left( x \right) = a{x^2} + bx + c\;,g\left( x \right) = {a_1}{x^2} + {b_1}x + {c_1},p\left( x \right) = f\left( x \right) - g\left( x \right),$ If $p\left( x \right) = 0$ only for $ x=-1 $ and $p\left( { - 2} \right) = 2$ then value of $p\left( 2 \right)$ is
$9$
$6$
$3$
$18$
Solution
Given that $P(x)=F(x)-g(x)$ has only one root $-1$
$\Rightarrow p(x)=\left(a-a_{1}\right) x^{2}+\left(b-b_{1}\right) x+\left(c-c_{1}\right)$ has
one root, $-1$ only
$\Rightarrow p^{\prime}(x)$ will also has root as $-1$ $\Rightarrow p^{\prime}(x)=0$ at $x=-1$
$\Rightarrow 2\left(a-a_{1}\right) x+\left(b-b_{1}\right)=0$ at $x=-1$
$\Rightarrow-2\left(a-a_{1}\right)+\left(b-b_{1}\right)=0$
$\Rightarrow \quad \frac{-\left(b-b_{1}\right)}{\left(a-a_{1}\right)}=-2$ ……$(i)$
Now, $p(x)=\left(a-a_{1}\right) x^{2}+\left(b-b_{1}\right) x+\left(c-c_{1}\right)$
$\Rightarrow \quad \frac{p(x)}{a-a_{1}}=x^{2}+\frac{b-b_{1}}{a-a_{1}} x+\frac{\left(c-c_{1}\right)}{a-a_{1}}$
$\because \quad p(-1)=0$
$\therefore \quad 0=(-1)^{2}-\frac{\left(b-b_{1}\right)}{a-a_{1}}+\frac{\left(c-c_{1}\right)}{a-a_{1}}$
$\Rightarrow \quad 0=1-2+\frac{\left(c-c_{1}\right)}{a-a_{1}} $ $\quad [{\rm{ using Eq}}{\rm{.}}\left( i \right)]$
$\Rightarrow \frac{\mathrm{c}-\mathrm{c}_{1}}{\mathrm{a}-\mathrm{a}_{1}}=1$ ……$(ii)$
Also, given that $p(-2)=2$
$\Rightarrow 4\left(a-a_{1}\right)-2\left(b-b_{1}\right)+\left(c-c_{1}\right)=2 \quad \ldots$ $(iii)$
From Eqs. $(i), (ii)$ and $(iii),$ we have
${4\left(a-a_{1}\right)-4\left(a-a_{1}\right)+\left(a-a_{1}\right)=2} $
$\Rightarrow$ ${a-a_{1}=2}$
On substituting $a-a_{1}=2$ in Eq. $(ii),$ we get
$c-c_{1}=2$
On substituting $a-a_{1}=2$ in Eq. $(i),$ we get
$b-b_{1}=4$
$ \text { Now, } p(2) =4\left(a-a_{1}\right)+2\left(b-b_{1}\right)+\left(c-c_{1}\right) $
$=4 \times 2+2 \times 4+2 $
$=8+8+2=18 $