1.Relation and Function
hard

Let for $a \ne {a_1} \ne 0,$ $f\left( x \right) = a{x^2} + bx + c\;,g\left( x \right) = {a_1}{x^2} + {b_1}x + {c_1},p\left( x \right) = f\left( x \right) - g\left( x \right),$ If $p\left( x \right) = 0$ only for  $ x=-1 $ and $p\left( { - 2} \right) = 2$ then value of $p\left( 2 \right)$ is

A

$9$

B

$6$

C

$3$

D

$18$

(AIEEE-2011)

Solution

Given that $P(x)=F(x)-g(x)$ has only one root $-1$

$\Rightarrow p(x)=\left(a-a_{1}\right) x^{2}+\left(b-b_{1}\right) x+\left(c-c_{1}\right)$ has

one root, $-1$ only

$\Rightarrow p^{\prime}(x)$ will also has root as $-1$ $\Rightarrow p^{\prime}(x)=0$ at $x=-1$

$\Rightarrow 2\left(a-a_{1}\right) x+\left(b-b_{1}\right)=0$ at $x=-1$

$\Rightarrow-2\left(a-a_{1}\right)+\left(b-b_{1}\right)=0$

$\Rightarrow \quad \frac{-\left(b-b_{1}\right)}{\left(a-a_{1}\right)}=-2$         ……$(i)$

Now, $p(x)=\left(a-a_{1}\right) x^{2}+\left(b-b_{1}\right) x+\left(c-c_{1}\right)$

$\Rightarrow \quad \frac{p(x)}{a-a_{1}}=x^{2}+\frac{b-b_{1}}{a-a_{1}} x+\frac{\left(c-c_{1}\right)}{a-a_{1}}$

$\because \quad p(-1)=0$

$\therefore \quad 0=(-1)^{2}-\frac{\left(b-b_{1}\right)}{a-a_{1}}+\frac{\left(c-c_{1}\right)}{a-a_{1}}$

$\Rightarrow \quad 0=1-2+\frac{\left(c-c_{1}\right)}{a-a_{1}} $ $\quad [{\rm{ using Eq}}{\rm{.}}\left( i \right)]$

$\Rightarrow \frac{\mathrm{c}-\mathrm{c}_{1}}{\mathrm{a}-\mathrm{a}_{1}}=1$         ……$(ii)$

Also, given that $p(-2)=2$

$\Rightarrow 4\left(a-a_{1}\right)-2\left(b-b_{1}\right)+\left(c-c_{1}\right)=2 \quad \ldots$ $(iii)$

From Eqs. $(i), (ii)$ and $(iii),$ we have

${4\left(a-a_{1}\right)-4\left(a-a_{1}\right)+\left(a-a_{1}\right)=2} $

$\Rightarrow$  ${a-a_{1}=2}$

On substituting $a-a_{1}=2$ in Eq. $(ii),$ we get

$c-c_{1}=2$

On substituting $a-a_{1}=2$ in Eq. $(i),$ we get

$b-b_{1}=4$

$ \text { Now, } p(2) =4\left(a-a_{1}\right)+2\left(b-b_{1}\right)+\left(c-c_{1}\right) $

$=4 \times 2+2 \times 4+2 $

$=8+8+2=18 $

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.