Let for $a \ne {a_1} \ne 0,$ $f\left( x \right) = a{x^2} + bx + c\;,g\left( x \right) = {a_1}{x^2} + {b_1}x + {c_1},p\left( x \right) = f\left( x \right) - g\left( x \right),$ If $p\left( x \right) = 0$ only for  $ x=-1 $ and $p\left( { - 2} \right) = 2$ then value of $p\left( 2 \right)$ is

  • [AIEEE 2011]
  • A

    $9$

  • B

    $6$

  • C

    $3$

  • D

    $18$

Similar Questions

Let function $f(x) = {x^2} + x + \sin x - \cos x + \log (1 + |x|)$ be defined over the interval $[0, 1]$. The odd extensions of $f(x)$ to interval $[-1, 1]$ is

Set of all values of $x$ satisfying

$\frac{{{x^4} - 4{x^3} + 3{x^2}}}{{({x^2} - 4)({x^2} - 7x + 10)}} \ge 0$

The period of function

$f\left( x \right) = {\cos ^2}\left( {\sin x} \right) + {\sin ^2}\left( {\cos x} \right)$ is

Let $N$ be the set of positive integers. For all $n \in N$, let $f_n=(n+1)^{1 / 3}-n^{1 / 3} \text { and }$ $A=\left\{n \in N: f_{n+1}<\frac{1}{3(n+1)^{2 / 3}} < f_n\right\}$ Then,

  • [KVPY 2019]

Let $f :R \to R$ be defined by $f(x)\,\, = \,\,\frac{x}{{1 + {x^2}}},\,x\, \in \,R.$ Then the range of $f$ is

  • [JEE MAIN 2019]