Gujarati
1.Relation and Function
normal

Let $A$ denote the set of all real numbers $x$ such that $x^3-[x]^3=\left(x-[x]^3\right)$, where $[x]$ is the greatest integer less than or equal to $x$. Then,

A

$A$ is a discrete set of a least two points

B

$A$ contains an interval, but is not an interval

C

$A$ is an interval, but a proper subset of $(-\infty, \infty)$

D

$A=(-\infty, \infty)$

(KVPY-2020)

Solution

(b)

Given, $x^3-[x]^3=(x-[x])^3$

$(x-\mid x])\left(x^2+[x]^2+x[x]\right)=(x-[x])^3$

$x-[x]=0$ or $x[x]=0$

$\{x\}=0$ or $x[x]=0$

$x \in Z$ or $x \in[0,1)$

Hence, solution in $x \in(0, 1 ) \cup Z$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.