Let $A$ denote the set of all real numbers $x$ such that $x^3-[x]^3=\left(x-[x]^3\right)$, where $[x]$ is the greatest integer less than or equal to $x$. Then,
$A$ is a discrete set of a least two points
$A$ contains an interval, but is not an interval
$A$ is an interval, but a proper subset of $(-\infty, \infty)$
$A=(-\infty, \infty)$
The function $f(x) = \frac{{{{\sec }^{ - 1}}x}}{{\sqrt {x - [x]} }},$ where $[.]$ denotes the greatest integer less than or equal to $x$ is defined for all $x$ belonging to
Function $f(x)={\left( {1 + \frac{1}{x}} \right)^x}$ then Domain of $f (x)$ is
Consider the identity function $I _{ N }: N \rightarrow N$ defined as $I _{ N }$ $(x)=x$ $\forall $ $x \in N$ Show that although $I _{ N }$ is onto but $I _{ N }+ I _{ N }:$ $ N \rightarrow N$ defined as $\left(I_{N}+I_{N}\right)(x)=$ $I_{N}(x)+I_{N}(x)$ $=x+x=2 x$ is not onto.
If the domain and range of $f(x){ = ^{9 - x}}{C_{x - 1}}$ contains $m$ and $n$ elements respectively, then
Range of $f(x) = \;[x]\; - x$ is