Let $A$ denote the set of all real numbers $x$ such that $x^3-[x]^3=\left(x-[x]^3\right)$, where $[x]$ is the greatest integer less than or equal to $x$. Then,

  • [KVPY 2020]
  • A

    $A$ is a discrete set of a least two points

  • B

    $A$ contains an interval, but is not an interval

  • C

    $A$ is an interval, but a proper subset of $(-\infty, \infty)$

  • D

    $A=(-\infty, \infty)$

Similar Questions

The function $f(x) = \frac{{{{\sec }^{ - 1}}x}}{{\sqrt {x - [x]} }},$ where $[.]$ denotes the greatest integer less than or equal to $x$  is defined for all  $x$  belonging to

Function $f(x)={\left( {1 + \frac{1}{x}} \right)^x}$ then Domain of $f (x)$ is

Consider the identity function $I _{ N }: N \rightarrow N$ defined as $I _{ N }$ $(x)=x$  $\forall $  $x \in N$ Show that although $I _{ N }$ is onto but $I _{ N }+ I _{ N }:$  $ N \rightarrow N$ defined as $\left(I_{N}+I_{N}\right)(x)=$ $I_{N}(x)+I_{N}(x)$ $=x+x=2 x$ is not onto.

If the domain and range of $f(x){ = ^{9 - x}}{C_{x - 1}}$ contains $m$ and $n$ elements respectively, then 

Range of $f(x) = \;[x]\; - x$ is