निम्न में से कौन से सम्बन्ध दो इकाई सदिशों $\hat{ A }$ व $\hat{ B }$ के लिए सत्य है, यदि $\hat{ A }$ व $\hat{ B }$ परस्पर $\theta$ कोण बनाते है ?
$|\hat{ A }+\hat{ B }|=|\hat{ A }-\hat{ B }| \tan \frac{\theta}{2}$
$|\hat{ A }-\hat{ B }|=|\hat{ A }+\hat{ B }| \tan \frac{\theta}{2}$
$|\hat{ A }+\hat{ B }|=|\hat{ A }-\hat{ B }| \cos \frac{\theta}{2}$
$|\overrightarrow{ A }-\hat{ B }|=|\overrightarrow{ A }+\hat{ B }| \cos \frac{\theta}{2}$
$\mathop A\limits^ \to = 4\hat i - 3\hat j$ तथा $\mathop B\limits^ \to = 8\hat i + 8\hat j$ के परिणामी के समांतर इकाई सदिश होगा
$\overrightarrow A + \overrightarrow B $ का परिणामी ${\mathop R\limits^ \to _1}$ है। सदिश $\overrightarrow {B,} $ को पलटने (विपरीत दिशा) पर परिणामी ${\mathop R\limits^ \to _2}$ हो जाता है। $R_1^2 + R_2^2$ का मान क्या होगा
दो बलों का सदिश योग उनके सदिश अंतर के लम्बवत् है। इस स्थिति में बल
एक कण का विस्थापन $12 \,m$ पूर्व की ओर तथा $5 \,m$ उत्तर की ओर तथा $6\,m$ ऊध्र्वाधर ऊपर की ओर है। इन विस्थापनों का योग ........ $m$ है
यदि $| A + B |=| A |+| B |$ तब $\mathop A\limits^ \to $व $\mathop B\limits^ \to $ के बीच कोण है