किसी खुले मैदान में कोई मोटर चालक एक ऐसा रास्ता अपनाता है जो प्रत्येक $500\, m$ के बाद उसके बाईं ओर $60^{\circ}$ के कोण पर मुड़ जाता है। किसी दिए मोड़ से शुरू होकर मोटर चालक का तीसरे, छठे व आठवें मोड़ पर विस्थापन बताइए। प्रत्येक स्थिति में मोटर चालक द्वारा इन मोड़ों पर तय की गई कुल पथ-लंबाई के साथ विस्थापन के परिमाण की तुलना कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The path followed by the motorist is a regular hexagon with side $500\, m$, as shown in the given figure

Let the motorist start from point $P$. The motorist takes the third turn at $S$.

$\therefore$ Magnitude of displacement $= PS = PV + VS =500+500=1000 \,m$

Total path length $= PQ + QR + RS =500+500+500=1500\, m$

The motorist takes the sixth turn at point $P$, which is the starting point.

$\therefore$ Magnitude of displacement $=0$ Total path length $= PQ + QR + RS + ST + TU + UP$

$=500+500+500+500+500+500=3000 \,m$

The motorist takes the eight turn at point $R$

$\therefore$ Magnitude of displacement $= PR$

$=\sqrt{ PQ ^{2}+ QR ^{2}+2( PQ ) \cdot( QR ) \cos 60^{\circ}}$

$=\sqrt{500^{2}+500^{2}+\left(2 \times 500 \times 500 \times \cos 60^{\circ}\right)}$

$=\sqrt{250000+250000+\left(500000 \times \frac{1}{2}\right)}$

$=866.03\, m$

$\beta=\tan ^{-1}\left(\frac{500 \sin 60^{\circ}}{500+500 \cos 60^{\circ}}\right)=30^{\circ}$

Therefore, the magnitude of displacement is $866.03\, m$ at an angle of $30^{\circ}$ with $PR$. Total path length $=$ Circumference of the hexagon $+ PQ + QR$ $=6 \times 500+500+500=4000\, m$

The magnitude of displacement and the total path length corresponding to the required turns is shown in the given table

Turn  Magnitude of displacement Total path length
Third  $1000 $ $1500 $
Sixth  $0 $ $3000 $
Eighth $866.03 ; 30^{\circ}$ $4000$
885-s20

Similar Questions

दो सदिशों के परिणामी के अधिकतम होने के लिए, उनके मध्य कितना कोण ....... $^o$ होना चाहिए

यदि $|{\mathop V\limits^ \to _1} + {\mathop V\limits^ \to _2}|\, = \,|{\mathop V\limits^ \to _1} - {\mathop V\limits^ \to _2}|$ तथा ${V_2}$ नियत हैं, तो

एक व्यक्ति $30 \,m$ उत्तर दिशा में इसके पश्चात् $20\, m$ पूर्व दिशा में तथा अंत में $30\sqrt 2 \,m$ दक्षिण-पश्चिम दिशा में चलता है। प्रारंभिक बिन्दु से व्यक्ति का विस्थापन होगा

परिमाण $2 F$ तथा $3 F$ वाले दो बल $P$ तथा $Q$ एक-दूसरे के साथ $\theta$ कोण पर लगाये जाते हैं। यदि बल $Q$ को दुगुना कर दिया जाए तो उनका परिणामी बल भी दुगुना हो जाता है तो कोण $\theta$ का मान ...... $^o$ है।

  • [JEE MAIN 2019]

किसी सदिश के प्रारंभिक तथा अंतिम बिन्दुओं के निर्देशांक $(4, -4, 0) $ तथा $(-2, -2, 0)$ हैं। इसका परिमाण होगा