माना $\left(\frac{1}{\sqrt{6}}+\beta x\right)^4,(1-3 \beta x)^2$ तथा $\left(1-\frac{\beta}{2} x \right)^6, \beta > 0$ के प्रसार में मध्य पदों के गुणांक क्रमश: एक $A.P.$ के पहले तीन पद हैं। यदि इस $A.P.$ का सार्व अंतर $d$ है, तो $50-\frac{2 d }{\beta^2}$ बराबर है
$57$
$56$
$55$
$54$
किसी समान्तर श्रेणी का $n$ वाँ पद $(2n - 1)$ है, तो उस श्रेणी के $n$ पदों का योग होगा
यदि $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}, a$ तथा $b$ के मध्य समांतर माध्य हो तो $n$ का मान ज्ञात कीजिए।
मान लें कि $A B C D$ एक चतुर्भुज इस प्रकार है कि, चतुर्भुज के भीतर एक बिंदु $E$ है जो $A E=B E=C E=D E$ को संतुष्ट करता है. मान लें कि $\angle D A B, \angle A B C, \angle B C D$ एक समान्तर श्रेढ़ी $(AP)$ है. तब समुच्चय $\{\angle D A B, \angle A B C, \angle B C D\}$ का माध्य है:
समांतर श्रेढ़ी $3,8,13, \ldots . .373$ के उन सभी पदों, जो $3$ से विभाज्य नहीं है, का योग बराबर है________
माना एक समांतर श्रेढ़ी के प्रथम $\mathrm{n}$ पदों का योग $\mathrm{S}_{\mathrm{n}}$ है। यदि $\mathrm{S}_{20}=790$ तथा $\mathrm{S}_{10}=145$ है, तो $\mathrm{S}_{15}-\mathrm{S}_5$ बराबर है :