10-2. Parabola, Ellipse, Hyperbola
medium

माना अतिपरवलय $\frac{ x ^2}{ a ^2}-\frac{ y ^2}{ b ^2}=1$ की उत्केन्द्रियता $\frac{5}{4}$ है। यदि अतिपरवलय के बिन्दु $\left(\frac{8}{\sqrt{5}}, \frac{12}{5}\right)$ पर अभिलम्ब का समीकरण $8 \sqrt{5} x +\beta y =\lambda$ हो तो $\lambda-\beta$ बराबर होगा $-$

A

$89$

B

$85$

C

$78$

D

$45$

(JEE MAIN-2022)

Solution

$e ^{2}=1+\frac{ b ^{2}}{ a ^{2}}=\frac{25}{16} \Rightarrow \frac{ b ^{2}}{ a ^{2}}=\frac{9}{16} \ldots \ldots(1)$

$A \left(\frac{8}{\sqrt{5}}, \frac{12}{5}\right)$ satisfies $\frac{ x ^{2}}{ a ^{2}}-\frac{ y ^{2}}{ b ^{2}}=1$

$\Rightarrow \frac{64}{5 a ^{2}}-\frac{144}{25 b ^{2}}=1$

Solving (1) and (2) $b =\frac{6}{5} \quad a =\frac{8}{5}$

Normal at $A$ is $\frac{\sqrt{5} a ^{2} x }{8}+\frac{5 b ^{2} y }{12}= a ^{2}+ b ^{2}$

Comparing it $8 \sqrt{5} x+\beta y=\lambda$

Gives $\lambda=100, \beta=15$

$\lambda-\beta=85$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.