10-2. Parabola, Ellipse, Hyperbola
normal

વર્તુળ $x ^{2}+ y ^{2}$ $-2 x +2 fy +1=0$ ના વ્યાસ ના બે સમીકરણો $2 px - y =1$ અને $2 x + py =4 p$ આપેલ છે. તો અતિવલય $3 x^{2}-y^{2}=3$ નો સ્પર્શક કે જેનો  ઢાળ $m \in(0, \infty)$ મેળવો કે જે વર્તુળના કેન્દ્ર માંથી પસાર થાય છે.

A

$6$

B

$2$

C

$4$

D

$8$

(JEE MAIN-2022)

Solution

$2 p+f-1=0$

$2-p f-4 p=0$

$2=p(f+4)$

$p=\frac{2}{f+4}$

$2 p=1-f$

$\frac{4}{f+4}=1-f$

$f^{2}+3 f=0$

$f=0 \text { or }-3$

Hyperbola $3 x ^{2}- y ^{2}=3, x ^{2}-\frac{ y ^{2}}{3}=1$

$y=m x \pm \sqrt{m^{2}-3}$

It passes $(1,0)$

$o=m \pm \sqrt{m^{2}-3}$

$m$ tends $\infty$

$\text { It passes }(1,3)$

$3=m \pm \sqrt{m^{2}-3}$

$(3-m)^{2}=m^{2}-3$

$m=2$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.