If the vertices $P$ and $Q$ of a triangle $PQR$ are given by $(2, 5)$ and $(4, -11)$ respectively, and the point $R$ moves along the line $N: 9x + 7y + 4 = 0$, then the locus of the centroid of the triangle $PQR$ is a straight line parallel to
The diagonals of a parallelogram $PQRS$ are along the lines $x + 3y = 4$ and $6x - 2y = 7$. Then $PQRS$ must be a
Two lines are drawn through $(3, 4)$, each of which makes angle of $45^\circ$ with the line $x - y = 2$, then area of the triangle formed by these lines is
If one vertex of an equilateral triangle of side $'a'$ lies at the origin and the other lies on the line $x - \sqrt{3} y = 0$ then the co-ordinates of the third vertex are :
If a variable line drawn through the point of intersection of straight lines $\frac{x}{\alpha } + \frac{y}{\beta } = 1$and $\frac{x}{\beta } + \frac{y}{\alpha } = 1$ meets the coordinate axes in $A$ and $B$, then the locus of the mid point of $AB$ is