माना प्रेक्षण $x _{ i }(1 \leq i \leq 10)$ समीकरणों $\sum_{ i =1}^{10}\left( x _{ i }-5\right)=10$ तथा $\sum_{ i =1}^{10}\left( x _{ i }-5\right)^{2}=40$ को संतुष्ट करते है। यदि $\mu$ तथा $\lambda$ प्रेक्षणों $x _{1}-3, x _{2}-3, \ldots, x _{10}-3$ के क्रमशः माध्य तथा प्रसरण है, तो क्रमित युग्म $(\mu, \lambda)$ बराबर है
$(6, 6)$
$(3, 6)$
$(6, 3)$
$(3, 3)$
$10$ प्रेक्षणों के माध्य तथा मानक विचलन क्रमशः $20$ तथा $8$ हैं। बाद में यह पाया गया कि एक प्रेक्षण को $40$ के स्थान पर $50$ लिया गया था। तो सही प्रसरण है :
आँकड़ों के एक समूह में $n$ प्रेक्षण : $x _{1}, x _{2}, \ldots, x _{ n }$ हैं। यदि $\sum_{ i =1}^{ n }\left( x _{ i }+1\right)^{2}=9 n$ तथा $\sum_{ i =1}^{ n }\left( x _{ i }-1\right)^{2}=5 n$ है, तो इन आँकड़ों का मानक विचलन है
माना $8$ संख्याओं $\mathrm{x}, \mathrm{y}, 10,12,6,12,4,8$ के माध्य तथा प्रसरण क्रमशः $9$ तथा $9.25$ हैं। यदि $x>y$ है, तो $3 x-2 y$ बराबर है_____
एक विद्यार्थी ने $100$ प्रेक्षणों का माध्य $40$ और मानक विचलन $5.1$ ज्ञात किया, जबकि उसने गलती से प्रेक्षण $40$ के स्थान पर $50$ ले लिया था। सही माध्य और मानक विचलन क्या है ?
माना $a_1$ के सभी मानों, जिनके लिए $100$ क्रमागत धनात्मक पूर्णांको $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3, \ldots ., \mathrm{a}_{100}$ का माध्य के सापेक्ष माध्य विचलन $25$ है, का समुच्चय $\mathrm{S}$ है, तब $\mathrm{S}$ बराबर है।