माना प्रेक्षण $x _{ i }(1 \leq i \leq 10)$ समीकरणों $\sum_{ i =1}^{10}\left( x _{ i }-5\right)=10$ तथा $\sum_{ i =1}^{10}\left( x _{ i }-5\right)^{2}=40$ को संतुष्ट करते है। यदि $\mu$ तथा $\lambda$ प्रेक्षणों $x _{1}-3, x _{2}-3, \ldots, x _{10}-3$ के क्रमशः माध्य तथा प्रसरण है, तो क्रमित युग्म $(\mu, \lambda)$ बराबर है
$(6, 6)$
$(3, 6)$
$(6, 3)$
$(3, 3)$
निम्नलिखित बंटन के लिए माध्य, प्रसरण और मानक विचलन ज्ञात कीजिए
वर्ग | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
बारंबारता | $3$ | $7$ | $12$ | $15$ | $8$ | $3$ | $2$ |
यदि आँकड़ें $x _{1}, x _{2}, \ldots, x _{10}$ इस प्रकार हैं कि इनमें से प्रथम चार का माध्य $11$, है बाकी छः का माध्य $16$ है तथा इन सभी के वर्गों का योग $2,000$ है, तो इन आँकड़ों का मानक विचलन हैं
$7$ प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $8$ तथा $16$ हैं यदि एक प्रेक्षण $14$ को हटाने पर शेष $6$ प्रेक्षणों का माध्य तथा प्रसरण क्रमशः $a$ तथा $b$ है, तो $a+3 b-5$ बराबर है____________.
प्रथम $n$ प्राकृत संख्याओं का मानक विचलन $(S.D.)$ है
आंकडों
$x_i$ | $0$ | $1$ | $5$ | $6$ | $10$ | $12$ | $17$ |
$f_i$ | $3$ | $2$ | $3$ | $2$ | $6$ | $3$ | $3$ |
का प्रसरण $\sigma^2$ बराबर है ..........