माना प्रेक्षण $x _{ i }(1 \leq i \leq 10)$ समीकरणों $\sum_{ i =1}^{10}\left( x _{ i }-5\right)=10$ तथा $\sum_{ i =1}^{10}\left( x _{ i }-5\right)^{2}=40$ को संतुष्ट करते है। यदि $\mu$ तथा $\lambda$ प्रेक्षणों $x _{1}-3, x _{2}-3, \ldots, x _{10}-3$ के क्रमशः माध्य तथा प्रसरण है, तो क्रमित युग्म $(\mu, \lambda)$ बराबर है
$(6, 6)$
$(3, 6)$
$(6, 3)$
$(3, 3)$
यदि आंकड़ों $6,10,7,13, a , 12, b , 12$ का माध्य तथा प्रसरण क्रमशः $9$ तथा $\frac{37}{4}$ हैं, तो $(a-b)^{2}$ बराबर है
आँकड़ों $2, 4, 6, 8, 10$ का प्रसरण है
पाँच प्रेक्षणों का माध्य $4$ है तथा इनका प्रसरण $5.2$ है। यदि इन प्रेक्षणों में से तीन $1, 2$ तथा $6$ है, तब अन्य दो प्रेक्षण हैं
नीचे दी गई प्रेक्षणों के दो समूहों की सांख्यिकी का विचार कीजिए
आकार | माध्य | प्रसरण | |
प्रेक्षण $I$ | $10$ | $2$ | $2$ |
प्रेक्षण $II$ | $n$ | $3$ | $1$ |
यदि इन दोनों प्रेक्षणों को मिलाकर बने समूह का प्रसरण $\frac{17}{9}$ है, तो $n$ का मान बराबर है
किसी असतत् श्रेणी में (जबकि सभी मान समान नहीं हैं) माध्य से माध्य विचलन तथा मानक विचलन के मध्य सम्बन्ध है