माना समुच्चय $\mathrm{C}=\left\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}^2-2^{\mathrm{y}}=2023, \mathrm{x}, \mathrm{y} \in \mathbb{N}\right\}$ है। तो $\sum_{(x, y) \in C}(x+y)$ बराबर है ............
$46$
$15$
$75$
$45$
मान लें कि $a>0$ तथा $a \neq 1$ है। तब सभी धनात्मक वास्तविक संख्याओं $b$ का समुच्चय $S$, जो $\left(1+a^2\right)\left(1+b^2\right)=4 a b$ को संतुष्ट करता है, निम्न होगा:
यदि ${A_1},\,{A_2},\,{A_3},........,{A_{30}}$ तीस समुच्चय इस प्रकार हैं कि प्रत्येक में $5$ अवयव हैं तथा ${B_1},\,{B_2}$, ......., $Bn, n $ समुच्चय इस प्रकार हैं कि प्रत्येक में $3$ अवयव हैं। माना $\bigcup\limits_{i = 1}^{30} {{A_i}} = \bigcup\limits_{j = 1}^n {{B_j}} $$= S$ तथा $ S$ का प्रत्येक अवयव $A'_is$ के $10$ वें तथा $B'_js$ के $9$ वें को पूर्णत: संतुष्ट करता है, तो $n$ बराबर है
माना $A =\{ x \in R :| x +1| < 2\}$ तथा $B =\{ x \in R :| x -1| \geq 2\}$ है। तब निम्न में से कौनसा कथन सत्य नहीं है ?
समुच्चय $\left\{n \in \mathbb{Z}:\left|n^2-10 n+19\right|<6\right\}$ में अवयवों की संख्या है____________.
समुच्चय $\left\{\mathrm{n} \in \mathbb{N}: 10 \leq \mathrm{n} \leq 100\right.$ तथा $3^{\mathrm{n}}-3,7$ का एक गुणज है \} में अवयवों की संख्या है :