माना छः संख्याएं $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3, \mathrm{a}_4, \mathrm{a}_5, \mathrm{a}_6$ समान्तर श्रेणी में है और $\mathrm{a}_1+\mathrm{a}_3=10$ है। यदि इन छ: संख्याओं का माध्य $\frac{19}{2}$ है और इनका प्रसरण $\sigma^2$ है, तब $8 \sigma^2$ का मान है :

  • [JEE MAIN 2023]
  • A

    $220$

  • B

    $210$

  • C

    $200$

  • D

    $105$

Similar Questions

निम्नलिखित बारंबारता बंटन के लिए माध्य व प्रसरण ज्ञात कीजिए।

वर्ग $0-10$ $10-20$ $20-30$ $30-40$ $40-50$
बारंबारता $5$ $8$ $15$ $16$ $6$

यदि प्रत्येक प्रेक्षण $x_{1}, x_{2}, \ldots, x_{n}$ को ' $a$ ', से बढ़ाया जाए जहाँ $a$ एक ऋणात्मक या धनात्मक संख्या है, तो दिखाइए कि प्रसरण अपरिवर्तित रहेगा।

माना प्रेक्षणों के दो समुच्चय $\mathrm{X}=\{11,12,13, \ldots \ldots$, $40,41\}$ तथा $\mathrm{Y}=\{61,62,63, \ldots ., 90,91\}$ है। यदि इनके माध्य क्रमशः $\bar{x}$ तथा $\bar{y}$ हैं तथा $\mathrm{X} \cup \mathrm{Y}$ में सभी प्रेक्षणों का प्रसरण $\sigma^2$ है तो $\left|\overline{\mathrm{x}}+\overline{\mathrm{y}}-\sigma^2\right|$ बराबर है_____________. 

  • [JEE MAIN 2023]

निम्नलिखित आँकड़ों के लिए माध्य व प्रसरण ज्ञात कीजिए।

तीन के प्रथम $10$ गुणज

माना चार संख्याओं $3,7, x$ तथा $y ( x > y )$ के माध्य तथा प्रसरण क्रमशः $5$ तथा $10$ है। तो चार संख्याओं $3+2 x , 7+2 y , x + y$ तथा $x - y$ का माध्य ............ है

  • [JEE MAIN 2021]