बीस प्रेक्षणों का माध्य तथा मानक विचलन क्रमश: $10$ तथा $2$ हैं। जाँच करने पर यह पाया गया कि प्रेक्षण $8$ गलत है। निम्न में से प्रत्येक का सही माध्य तथा मानक विचलन ज्ञात कीजिए यदि
गलत प्रेक्षण हटा दिया जाए।
Number of observations (n) $=20$
Incorrect mean $=10$
Incorrect standard deviation $=2$
$\bar x = \frac{1}{n}\sum\limits_{i = 1}^{20} {{x_i}} $
$10 = \frac{1}{{20}}\sum\limits_{i = 1}^{20} {{x_i}} $
$ \Rightarrow \sum\limits_{i = 1}^{20} {{x_i}} = 200$
That is, incorrect sum of observations $=200$
Correct sum of observations $=200-8=192$
$\therefore$ Correct mean $=\frac{\text { correct sum }}{19}=\frac{192}{19}=10.1$
Standard deviation $\sigma = \sqrt {\frac{1}{n}\sum\limits_{i = 1}^n {{x_i}^2 - \frac{1}{{{n^2}}}{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} } $
$ = \sqrt {\frac{1}{n}\sum\limits_{i = 1}^n {x_i^2 - {{\left( {\bar x} \right)}^2}} } $
$ \Rightarrow 2 = \sqrt {\frac{1}{{20}}Incorrect\sum\limits_{i = 1}^n {x_i^2 - {{\left( {10} \right)}^2}} } $
$ \Rightarrow 4 = \frac{1}{{20}}Incorrect\sum\limits_{i = 1}^n {x_i^2 - 100} $
$ \Rightarrow Incorrect\sum\limits_{i = 1}^n {x_i^2 = 2080} $
$\therefore Correct\,\,\sum\limits_{i = 1}^n {x_i^2 = \,} Incorrect\,\,\sum\limits_{i = 1}^n {x_i^2 - {{\left( 8 \right)}^2}} $
$=2080-64$
$=2016$
$\therefore$ Correct standard deviation $=\sqrt{\frac{\text { Correct } \sum x_{i}^{2}}{n}-(\text { Correct mean })^{2}}$
$=\sqrt{\frac{2016}{19}-(10.1)^{2}}$
$=\sqrt{1061 \cdot 1-102 \cdot 1}$
$=\sqrt{4.09}$
$=2.02$
दो आंकड़ा समुच्चय, जिनमें से प्रत्येक में $5$ अवयव हैं के प्रसरण $4$ तथा $5$ हैं तथा उनके तदनुरूपी माध्य क्रमशः $2$ तथा $4$ हैं। मिश्रित आँकड़ा-समुच्चय का प्रसरण है
माना प्रेक्षण $x _{ i }(1 \leq i \leq 10)$ समीकरणों $\sum_{ i =1}^{10}\left( x _{ i }-5\right)=10$ तथा $\sum_{ i =1}^{10}\left( x _{ i }-5\right)^{2}=40$ को संतुष्ट करते है। यदि $\mu$ तथा $\lambda$ प्रेक्षणों $x _{1}-3, x _{2}-3, \ldots, x _{10}-3$ के क्रमशः माध्य तथा प्रसरण है, तो क्रमित युग्म $(\mu, \lambda)$ बराबर है
एक विद्यार्थी द्वारा $10$ प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $15$ तथा $15$ निकाले गए। विद्यार्थी ने एक परीक्षण $15$ को गलती से $25$ लिया। तो सही मानक विचलन है $...........$
यदि $0, 1, 2, 3, …..,9$ का मानक विचलन $K$ है, तब $10, 11, 12, 13,…..,19$ का मानक विचलन है
माना $2 n$ प्रेक्षणों की एक शंखला में, आधे $a$ के बराबर है तथा शेष आधे $- a$ के बराबर है। प्रत्येक प्रेक्षण में एक अचर $b$ जोड़ने पर नये समूह का माध्य तथा मानक विचलन क्रमशः $5$ तथा $20$ हैं। तो $a ^{2}+ b ^{2}$ का मान बराबर है