- Home
- Standard 11
- Mathematics
बीस प्रेक्षणों का माध्य तथा मानक विचलन क्रमश: $10$ तथा $2$ हैं। जाँच करने पर यह पाया गया कि प्रेक्षण $8$ गलत है। निम्न में से प्रत्येक का सही माध्य तथा मानक विचलन ज्ञात कीजिए यदि
गलत प्रेक्षण हटा दिया जाए।
$2.02$
$2.02$
$2.02$
$2.02$
Solution
Number of observations (n) $=20$
Incorrect mean $=10$
Incorrect standard deviation $=2$
$\bar x = \frac{1}{n}\sum\limits_{i = 1}^{20} {{x_i}} $
$10 = \frac{1}{{20}}\sum\limits_{i = 1}^{20} {{x_i}} $
$ \Rightarrow \sum\limits_{i = 1}^{20} {{x_i}} = 200$
That is, incorrect sum of observations $=200$
Correct sum of observations $=200-8=192$
$\therefore$ Correct mean $=\frac{\text { correct sum }}{19}=\frac{192}{19}=10.1$
Standard deviation $\sigma = \sqrt {\frac{1}{n}\sum\limits_{i = 1}^n {{x_i}^2 – \frac{1}{{{n^2}}}{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} } $
$ = \sqrt {\frac{1}{n}\sum\limits_{i = 1}^n {x_i^2 – {{\left( {\bar x} \right)}^2}} } $
$ \Rightarrow 2 = \sqrt {\frac{1}{{20}}Incorrect\sum\limits_{i = 1}^n {x_i^2 – {{\left( {10} \right)}^2}} } $
$ \Rightarrow 4 = \frac{1}{{20}}Incorrect\sum\limits_{i = 1}^n {x_i^2 – 100} $
$ \Rightarrow Incorrect\sum\limits_{i = 1}^n {x_i^2 = 2080} $
$\therefore Correct\,\,\sum\limits_{i = 1}^n {x_i^2 = \,} Incorrect\,\,\sum\limits_{i = 1}^n {x_i^2 – {{\left( 8 \right)}^2}} $
$=2080-64$
$=2016$
$\therefore$ Correct standard deviation $=\sqrt{\frac{\text { Correct } \sum x_{i}^{2}}{n}-(\text { Correct mean })^{2}}$
$=\sqrt{\frac{2016}{19}-(10.1)^{2}}$
$=\sqrt{1061 \cdot 1-102 \cdot 1}$
$=\sqrt{4.09}$
$=2.02$