बीस प्रेक्षणों का माध्य तथा मानक विचलन क्रमश: $10$ तथा $2$ हैं। जाँच करने पर यह पाया गया कि प्रेक्षण $8$ गलत है। निम्न में से प्रत्येक का सही माध्य तथा मानक विचलन ज्ञात कीजिए यदि

गलत प्रेक्षण हटा दिया जाए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Number of observations (n) $=20$

Incorrect mean $=10$

Incorrect standard deviation $=2$

$\bar x = \frac{1}{n}\sum\limits_{i = 1}^{20} {{x_i}} $

$10 = \frac{1}{{20}}\sum\limits_{i = 1}^{20} {{x_i}} $

$ \Rightarrow \sum\limits_{i = 1}^{20} {{x_i}}  = 200$

That is, incorrect sum of observations $=200$

Correct sum of observations $=200-8=192$

$\therefore$ Correct mean $=\frac{\text { correct sum }}{19}=\frac{192}{19}=10.1$

Standard deviation $\sigma  = \sqrt {\frac{1}{n}\sum\limits_{i = 1}^n {{x_i}^2 - \frac{1}{{{n^2}}}{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} } $

$ = \sqrt {\frac{1}{n}\sum\limits_{i = 1}^n {x_i^2 - {{\left( {\bar x} \right)}^2}} } $

$ \Rightarrow 2 = \sqrt {\frac{1}{{20}}Incorrect\sum\limits_{i = 1}^n {x_i^2 - {{\left( {10} \right)}^2}} } $

$ \Rightarrow 4 = \frac{1}{{20}}Incorrect\sum\limits_{i = 1}^n {x_i^2 - 100} $

$ \Rightarrow Incorrect\sum\limits_{i = 1}^n {x_i^2 = 2080} $

$\therefore Correct\,\,\sum\limits_{i = 1}^n {x_i^2 = \,} Incorrect\,\,\sum\limits_{i = 1}^n {x_i^2 - {{\left( 8 \right)}^2}} $

$=2080-64$

$=2016$

$\therefore$ Correct standard deviation $=\sqrt{\frac{\text { Correct } \sum x_{i}^{2}}{n}-(\text { Correct mean })^{2}}$

$=\sqrt{\frac{2016}{19}-(10.1)^{2}}$

$=\sqrt{1061 \cdot 1-102 \cdot 1}$

$=\sqrt{4.09}$

$=2.02$

Similar Questions

दो आंकड़ा समुच्चय, जिनमें से प्रत्येक में $5$ अवयव हैं के प्रसरण $4$ तथा $5$ हैं तथा उनके तदनुरूपी माध्य क्रमशः $2$ तथा $4$ हैं। मिश्रित आँकड़ा-समुच्चय का प्रसरण है

  • [AIEEE 2010]

माना प्रेक्षण $x _{ i }(1 \leq i \leq 10)$ समीकरणों $\sum_{ i =1}^{10}\left( x _{ i }-5\right)=10$ तथा $\sum_{ i =1}^{10}\left( x _{ i }-5\right)^{2}=40$ को संतुष्ट करते है। यदि $\mu$ तथा $\lambda$ प्रेक्षणों $x _{1}-3, x _{2}-3, \ldots, x _{10}-3$ के क्रमशः माध्य तथा प्रसरण है, तो क्रमित युग्म $(\mu, \lambda)$ बराबर है 

  • [JEE MAIN 2020]

एक विद्यार्थी द्वारा $10$ प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $15$ तथा $15$ निकाले गए। विद्यार्थी ने एक परीक्षण $15$ को गलती से $25$ लिया। तो सही मानक विचलन है $...........$

  • [JEE MAIN 2022]

यदि $0, 1, 2, 3, …..,9$ का मानक विचलन $K$ है, तब $10, 11, 12, 13,…..,19$ का मानक विचलन है

माना $2 n$ प्रेक्षणों की एक शंखला में, आधे $a$ के बराबर है तथा शेष आधे $- a$ के बराबर है। प्रत्येक प्रेक्षण में एक अचर $b$ जोड़ने पर नये समूह का माध्य तथा मानक विचलन क्रमशः $5$ तथा $20$ हैं। तो $a ^{2}+ b ^{2}$ का मान बराबर है

  • [JEE MAIN 2021]