Let the tangents at the points $A (4,-11)$ and $B (8,-5)$ on the circle $x^2+y^2-3 x+10 y-15=0$, intersect at the point $C$. Then the radius of the circle, whose centre is $C$ and the line joining $A$ and $B$ is its tangent, is equal to
$\frac{3 \sqrt{3}}{4}$
$2 \sqrt{13}$
$\sqrt{13}$
$\frac{2 \sqrt{13}}{3}$
If the point $(1, 4)$ lies inside the circle $x^2 + y^2-6x - 10y + p = 0$ and the circle does not touch or intersect the coordinate axes, then the set of all possible values of $p$ is the interval
Equation of the tangent to the circle ${x^2} + {y^2} = {a^2}$ which is perpendicular to the straight line $y = mx + c$ is
Two circles each of radius $5\, units$ touch each other at the point $(1,2)$. If the equation of their common tangent is $4 \mathrm{x}+3 \mathrm{y}=10$, and $\mathrm{C}_{1}(\alpha, \beta)$ and $\mathrm{C}_{2}(\gamma, \delta)$, $\mathrm{C}_{1} \neq \mathrm{C}_{2}$ are their centres, then $|(\alpha+\beta)(\gamma+\delta)|$ is equal to .... .
The angle between the two tangents from the origin to the circle ${(x - 7)^2} + {(y + 1)^2} = 25$ is
If $\frac{x}{\alpha } + \frac{y}{\beta } = 1$ touches the circle ${x^2} + {y^2} = {a^2}$, then point $(1/\alpha ,\,1/\beta )$ lies on a/an