- Home
- Standard 11
- Mathematics
Let the tangents at the points $A (4,-11)$ and $B (8,-5)$ on the circle $x^2+y^2-3 x+10 y-15=0$, intersect at the point $C$. Then the radius of the circle, whose centre is $C$ and the line joining $A$ and $B$ is its tangent, is equal to
$\frac{3 \sqrt{3}}{4}$
$2 \sqrt{13}$
$\sqrt{13}$
$\frac{2 \sqrt{13}}{3}$
Solution
Equation of tangent at $A (4,-11)$ on circle is
$\Rightarrow 4 x-11 y -3\left(\frac{ x +4}{2}\right)+10\left(\frac{ y -11}{2}\right)-15=0$
$\Rightarrow 5 x -12 y -152=0 \ldots \ldots(1)$
Equation of tangent at $B (8,-5)$ on circle is
$\Rightarrow 8 x-5 y-3\left(\frac{x+8}{2}\right)+10\left(\frac{y-5}{2}\right)-15=0$
$\Rightarrow 13 x-104=0 \Rightarrow x=8$
put in $(1)$ $\Rightarrow y =\frac{28}{3}$
$r =\left|\frac{3.8+\frac{2.28}{3}-34}{\sqrt{13}}\right|=\frac{2 \sqrt{13}}{3}$