Let us consider a system of units in which mass and angular momentum are dimensionless. If length has dimension of $L$, which of the following statement ($s$) is/are correct ?

$(1)$ The dimension of force is $L ^{-3}$

$(2)$ The dimension of energy is $L ^{-2}$

$(3)$ The dimension of power is $L ^{-5}$

$(4)$ The dimension of linear momentum is $L ^{-1}$

  • [IIT 2019]
  • A

    $1,2,4$

  • B

    $1,2,3$

  • C

    $1,2$

  • D

    $1,3$

Similar Questions

The dimensions of Stefan-Boltzmann's constant $\sigma$ can be written in terms of Planck's constant $h$, Boltzmann's constant $k_B$ and the speed of light $c$ as $\sigma=h^\alpha k_B^\beta c^\gamma$. Here,

  • [KVPY 2014]

According to Newton, the viscous force acting between liquid layers of area $A$ and velocity gradient $\Delta v/\Delta z$ is given by $F = - \eta A\frac{{\Delta v}}{{\Delta z}}$ where $\eta $ is constant called coefficient of viscosity. The dimension of $\eta $ are

  • [AIPMT 1990]

Number of particles is given by $n = - D\frac{{{n_2} - {n_1}}}{{{x_2} - {x_1}}}$ crossing a unit area perpendicular to $X-$axis in unit time, where ${n_1}$ and ${n_2}$ are number of particles per unit volume for the value of $x$ meant to ${x_2}$ and ${x_1}$. Find dimensions of $D$ called as diffusion constant

Force $(F)$ and density $(d)$ are related as $F\, = \,\frac{\alpha }{{\beta \, + \,\sqrt d }}$ then dimension of $\alpha $ are

If time $(t)$, velocity $(u)$, and angular momentum $(I)$ are taken as the fundamental units. Then the dimension of mass $({m})$ in terms of ${t}, {u}$ and ${I}$ is

  • [JEE MAIN 2021]