- Home
- Standard 11
- Physics
Let us consider a system of units in which mass and angular momentum are dimensionless. If length has dimension of $L$, which of the following statement ($s$) is/are correct ?
$(1)$ The dimension of force is $L ^{-3}$
$(2)$ The dimension of energy is $L ^{-2}$
$(3)$ The dimension of power is $L ^{-5}$
$(4)$ The dimension of linear momentum is $L ^{-1}$
$1,2,4$
$1,2,3$
$1,2$
$1,3$
Solution
Mass $= M ^0 L ^0 T ^0$
$MVr = M ^0 L ^0 T ^0$
$M ^0 \frac{ L ^1}{ T ^1} \cdot L ^1= M ^0 L ^0 T ^0$
$L ^2= T ^1$ $. . . . . . .(1)$
Force $= M ^1 L ^1 T ^{-2} \quad \text { (in SI) }$
$= M ^0 L ^1 L ^{-4}$(In new system from equation $(1)) $
$= L ^{-3}$
Energy $= M ^1 L ^2 T ^{-2} \quad \text { (In SI) }$
$= M ^0 L ^2 L ^{-4}$ (In new system from equation $ (1)) $
$= L ^{-2}$
Power $=\frac{\text { Energy }}{\text { Time }}$
$= M ^1 L ^2 T ^{-5} \quad \text { (in SI) }$
$=M^0 L^2 L^{-6} $ (In new system from equation $(1)) $
$= L ^4$
Linear momentum $= M ^1 L ^1 T ^{-1} \text { (in SI) }$
$=M^0 L^1 L^{-2} $ (In new system from equation $(1)) $
$= L ^{-1}$
Ans. $(1,2,4)$
Similar Questions
Match List $I$ with List $II$ and select the correct answer using the codes given below the lists :
List $I$ | List $II$ |
$P.$ Boltzmann constant | $1.$ $\left[ ML ^2 T ^{-1}\right]$ |
$Q.$ Coefficient of viscosity | $2.$ $\left[ ML ^{-1} T ^{-1}\right]$ |
$R.$ Planck constant | $3.$ $\left[ MLT ^{-3} K ^{-1}\right]$ |
$S.$ Thermal conductivity | $4.$ $\left[ ML ^2 T ^{-2} K ^{-1}\right]$ |
Codes: $ \quad \quad P \quad Q \quad R \quad S $