Let
$S _1=\{( i , j , k ): i , j , k \in\{1,2, \ldots, 10\}\}$
$S _2=\{( i , j ): 1 \leq i < j +2 \leq 10, i , j \in\{1,2, \ldots, 10\}\},$
$S _3=\{( i , j , k , l): 1 \leq i < j < k < l, i , j , k , l \in\{1,2, \ldots ., 10\}\}$
$S _4=\{( i , j , k , l): i , j , k$ and $l$ are distinct elements in $\{1,2, \ldots, 10\}\}$
and If the total number of elements in the set $S _t$ is $n _z, r =1,2,3,4$, then which of the following statements is (are) TRUE?
$(A)$ $n _1=1000$ $(B)$ $n _2=44$ $(C)$ $n _3=220$ $(D)$ $\frac{ n _4}{12}=420$
$A,B,C$
$A,B$
$A,B,D$
$A,C$
For non-negative integers $s$ and $r$, let
$\binom{s}{r}=\left\{\begin{array}{ll}\frac{s!}{r!(s-r)!} & \text { if } r \leq s \\ 0 & \text { if } r>s\end{array}\right.$
For positive integers $m$ and $n$, let
$(m, n) \sum_{ p =0}^{ m + n } \frac{ f ( m , n , p )}{\binom{ n + p }{ p }}$
where for any nonnegative integer $p$,
$f(m, n, p)=\sum_{i=0}^{ p }\binom{m}{i}\binom{n+i}{p}\binom{p+n}{p-i}$
Then which of the following statements is/are $TRUE$?
$(A)$ $(m, n)=g(n, m)$ for all positive integers $m, n$
$(B)$ $(m, n+1)=g(m+1, n)$ for all positive integers $m, n$
$(C)$ $(2 m, 2 n)=2 g(m, n)$ for all positive integers $m, n$
$(D)$ $(2 m, 2 n)=(g(m, n))^2$ for all positive integers $m, n$
A person wants to climb a $n-$ step staircase using one step or two steps. Let $C_n$ denotes the number of ways of climbing the $n-$ step staircase. Then $C_{18} + C_{19}$ equals
The number of groups that can be made from $5$ different green balls, $4$ different blue balls and $3$ different red balls, if at least $1$ green and $1$ blue ball is to be included
In how many ways can one select a cricket team of eleven from $17$ players in which only $5$ players can bowl if each cricket team of $11$ must include exactly $4$ bowlers?
There were two women participating in a chess tournament. Every participant played two games with the other participants. The number of games that the men played between themselves proved to exceed by $66$ the number of games that the men played with the women. The number of participants is