Lets $S=\{z \in C:|z-1|=1$ and $(\sqrt{2}-1)(z+\bar{z})-i(z-\bar{z})=2 \sqrt{2}\}$. Let $\mathrm{z}_1, \mathrm{z}_2$ $\in S$ be such that $\left|z_1\right|=\max _{z \in S}|z|$ and $\left|z_2\right|=\min _{z \in S}|z|$. Then $\left|\sqrt{2} z_1-z_2\right|^2$ equals :

  • [JEE MAIN 2024]
  • A

    $1$

  • B

    $4$

  • C

    $3$

  • D

    $2$

Similar Questions

Let $\bar{z}$ denote the complex conjugate of a complex number $z$ and let $i=\sqrt{-1}$. In the set of complex numbers, the number of distinct roots of the equation

$\bar{z}-z^2=i\left(\bar{z}+z^2\right)$ is. . . . . .

  • [IIT 2022]

The amplitude of $\frac{{1 + \sqrt 3 i}}{{\sqrt 3 + 1}}$ is

If $|z|\, = 4$ and $arg\,\,z = \frac{{5\pi }}{6},$then $z =$

If $z$ and $\omega $ are two non-zero complex numbers such that $|z\omega |\, = 1$ and $arg(z) - arg(\omega ) = \frac{\pi }{2},$ then $\bar z\omega $ is equal to

  • [AIEEE 2003]

The value of $|z - 5|$if $z = x + iy$, is