माना $S=\{z \in C:|z-1|=1$ तथा $(\sqrt{2}-1)(\mathrm{z}+\overline{\mathrm{z}})-\mathrm{i}(\mathrm{z}-\overline{\mathrm{z}})=2 \sqrt{2}\}$ है
माना $z_1, z_2 \in S$ के लिए $\left|z_1\right|=\max _{z \in S}|z|$ तथा $\left|z_2\right|=\min _{z \in S}|z|$ है, तो $\left|\sqrt{2} z_1-z_2\right|^2$ बराबर है :
$1$
$4$
$3$
$2$
यदि $z_{1}, z_{2}$ तथा $z_{3}, z_{4}$ सम्मिश्र संयुग्मी संख्याओं के दो युग्म हैं, तो- $\arg \left(\frac{z_{1}}{z_{4}}\right)+\arg \left(\frac{z_{2}}{z_{3}}\right)$ बराबर है
यदि $z_1$ व $z_2$ कोईभी सम्मिश्र संख्याएँ हैं, तब $|{z_1} + \sqrt {z_1^2 - z_2^2} |$ $ + |{z_1} - \sqrt {z_1^2 - z_2^2} |$ बराबर है
यदि $\frac{ z -\alpha}{ z +\alpha}(\alpha \in R )$ एक शुद्ध रूप से काल्पनिक संख्या है, तथा $| Z |=2$ है, तो $\alpha$ का एक मान है
$\sin \frac{\pi }{5} + i\,\left( {1 - \cos \frac{\pi }{5}} \right)$ का कोणांक होगा
माना $\alpha=8-14 i, A=\left\{z \in \mathbb{C}: \frac{\alpha z-\bar{\alpha} \bar{z}}{z^2-(\bar{z})^2-112 i}=1\right\}$ तथा $B=\{z \in \mathbb{C}:|z+3 i|=4\}$ हैं तो $\sum_{\mathrm{z} \in \mathrm{A} \cap \mathrm{B}}(\operatorname{Re} z-\operatorname{Im} z)$ बराबर ___________ है।