ધારો કે $S=\{z \in C:|z-1|=1$ અને $(\sqrt{2}-1)(z+\bar{z})-i(z-\bar{z})=2 \sqrt{2}\}$.ધારો કે $\mathrm{z}_1, \mathrm{z}_2$ $\in S$ એવી છે કે જેથી $\left|z_1\right|=\max _{z \in S}|z|$ અને $\left|z_2\right|=\min _{z \in S}|z|$. તો $\left|\sqrt{2} z_1-z_2\right|^2$....................
$1$
$4$
$3$
$2$
જો ${z_1}$ અને ${z_2}$ બે સંકર સંખ્યા છે કે જેથી $|{z_1} + {z_2}| = |{z_1}| + |{z_2}|$ તો arg $({z_1}) - $arg $({z_2})$ = . . . ..
જો$z = \frac{{1 - i\sqrt 3 }}{{1 + i\sqrt 3 }},$તો $arg(z) = $ ............. $^\circ$
$\frac{{1 + i}}{{1 - i}}$ ના કોણાંક અને માનાંક મેળવો.
જો $z$ અને $\omega $ એ બે શૂન્યતર સંકર સંખ્યા છે કે જેથી $|z\omega |\, = 1$ અને $arg(z) - arg(\omega ) = \frac{\pi }{2},$ તો $\bar z\omega $ મેળવો.
સંકર સંખ્યા $\frac{{2 + 5i}}{{4 - 3i}}$ ની અનુબદ્ધ સંકર સંખ્યા મેળવો.