- Home
- Standard 11
- Mathematics
lf a line $L$ is perpendicular to the line $5x - y\,= 1$ , and the area of the triangle formed by the line $L$ and the coordinate axes is $5$, then the distance of line $L$ from the line $x + 5y\, = 0$ is
$\frac{7}{{\sqrt 5 }}$
$\frac{5}{{\sqrt {13} }}$
$\frac{7}{{\sqrt {13} }}$
$\frac{5}{{\sqrt 7 }}$
Solution

Let equation of line $L$, perpendicular to $5x-y=1$ be $x+5y=c$
Given that are of $\Delta AOB$ is $5$.
We know
$\left\{ {are,A = \frac{1}{2}\left[ {{x_1}\left( {{y_2} – {y_2}} \right) + {x_2}\left( {{y_3} – {y_1}} \right) + {x_3}\left( {{y_1} – {y_2}} \right)} \right]} \right\}$
$ \Rightarrow 5 = \frac{1}{2}\left[ {c\left( {\frac{c}{5}} \right)} \right]$
$\because \left ( \begin{array}{l}
\left( {{x_1},{y_1}} \right) = \left( {10,0} \right)\left( {{x_3},{y_3}} \right) = \left( {0,\frac{c}{5}} \right)\\
\left( {{x_2},{y_2}} \right) = \left( {c,0} \right)
\end{array} \right)$
$ \Rightarrow c = \pm \sqrt {50} $
$\therefore $ Equation of line $L$ is $x + 5y = \pm \sqrt {50} $
Distance betwween $L$ and line $x+5y=0$ is
$d = \left. {\frac{{ \pm \sqrt {50} – 0}}{{\sqrt {{1^2} + {5^2}} }}} \right| = \frac{{\sqrt {50} }}{{\sqrt {26} }} = \frac{5}{{\sqrt {13} }}$