lf a line $L$ is perpendicular to the line $5x - y\,= 1$ , and the area of the triangle formed by the line $L$ and the coordinate axes is $5$, then the distance of line $L$ from the line $x + 5y\, = 0$ is
$\frac{7}{{\sqrt 5 }}$
$\frac{5}{{\sqrt {13} }}$
$\frac{7}{{\sqrt {13} }}$
$\frac{5}{{\sqrt 7 }}$
Find the area of the triangle formed by the line $y-x=0, x+y=0$ and $x-k=0$.
Let a triangle be bounded by the lines $L _{1}: 2 x +5 y =10$; $L _{2}:-4 x +3 y =12$ and the line $L _{3}$, which passes through the point $P (2,3)$, intersect $L _{2}$ at $A$ and $L _{1}$ at $B$. If the point $P$ divides the line-segment $A B$, internally in the ratio $1: 3$, then the area of the triangle is equal to
A triangle is formed by $X -$ axis, $Y$ - axis and the line $3 x+4 y=60$. Then the number of points $P ( a, b)$ which lie strictly inside the triangle, where $a$ is an integer and $b$ is a multiple of $a$, is $...........$
The locus of a point $P$ which divides the line joining $(1, 0)$ and $(2\cos \theta ,2\sin \theta )$ internally in the ratio $2 : 3$ for all $\theta $, is a
A pair of straight lines drawn through the origin form with the line $2x + 3y = 6$ an isosceles right angled triangle, then the lines and the area of the triangle thus formed is